精英家教网 > 初中数学 > 题目详情

如图,D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.
(1)求证:△BFD≌△CED;
(2)当∠A=90°时,求证:四边形AFDE是正方形.

(1)证明:∵DE⊥AC,DF⊥AB,
∴∠BFD=∠CED=90°,
在Rt△BDF和Rt△CDE中,
∴Rt△BDF≌Rt△CDE(HL);

(2)答:四边形AFDE是正方形.
证明:∵∠A=90°,DE⊥AC,DF⊥AB,
∴四边形AFDE是矩形,
又∵Rt△BDF≌Rt△CDE,
∴DF=DE,
∴四边形AFDE是正方形.
分析:(1)利用“HL”证明Rt△BDF≌Rt△CDE;
(2)由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.
点评:此题主要考查学生对全等三角形的判定和性质及正方形的判定方法的掌握情况.判别一个四边形为正方形主要根据正方形的概念,途经有两种:
①先说明它是矩形,再说明有一组邻边相等;
②先说明它是菱形,再说明它有一个角为直角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的中线,∠ADC=60°,点C′与点C关于直线AD对称,若BC=6cm,则点B与点C′之间的距离为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,已知∠B=62°,则∠CAO的度数是(  )
A、28°B、30°C、31°D、62°

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,AD是△ABC的角平分线,∠B=60°,E,F分别在AC、AB上,且AE=AF,∠CDE=∠BAC,那么,图中长度一定与DE相等的线段共有
3
条.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O是△ABC的外接圆,AB是直径,若∠B=50°,则∠A等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的外接圆直径,AD=
2
,∠B=∠DAC,则AC的值为
1
1

查看答案和解析>>

同步练习册答案