精英家教网 > 初中数学 > 题目详情

【题目】(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.求证:△AEC≌△CDB;

(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.

(3)拓展提升:如图3,等边△EBC中,EC=BC=4cm,点OBC上,且OC=3cm,动点P从点E沿射线EC2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

【答案】(1)详见解析;(2)18;(3)2.5秒.

【解析】

(1)利用同角的余角相等判断出∠CAE=BCD,即可得出结论;

(2)先作出高,进而判断出ABC≌△B'AG,求出B'G,最后用三角形的面积公式即可得出结论;

(3)利用等式的性质得出,∠CPO=BOF,进而判断出BOF≌△PCO,即可求出CP=1,即可得出结论.

(1)BDl,AEl,

∴∠AEC=CDB=90°,

∴∠CAE+ACE=90°,

∵∠ACB=90°,

∴∠ACE+BCD=90°,

∴∠CAE=BCD,

ACECBD中,

∴△ACE≌△CBD;

(2)如图2,过点B'B'GACG,

∴∠B'AG+AB'G=90°,

∵∠BAB'=90°,

∴∠BAC+B'AG=90°,

∴∠AB'G=BAC,由旋转知,AB=AB',

ABCB'AG中,

∴△ABC≌△B'AG,

B'G=AC=6,

SACB'=AC×B'G=18;

(3)如图3,

由旋转知,OP=OF,

∵△BCE是等边三角形,

∴∠CBE=BCE=60°,

∴∠OCP=FBO=120°,CPO+COP=60°,

∵∠POF=120°,

∴∠COP+BOF=60°,

∴∠CPO=BOF,

BOFPCO中,

∴△BOF≌△PCO,

CP=OB,

EC=BC=4cm,OC=3cm,

OB=BC﹣OC=1,

CP=1,

EP=CE+CP=5,

∴点P运动的时间t=5÷2=2.5秒.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC是正方形ABCD的对角线,将△ACD绕着点A顺时针旋转后得到△AC′D′,点D′落在AC上,C′D′交BC于点E,若AB=1,则图中阴影部分图形的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).

(1)①请画出△ABC向左平移5个单位长度后得到的△A1B1C1
②请画出△ABC关于原点对称的△A2B2C2
(2)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC∠BAC=54°∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC= 度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥ADQ.

(1)求证:△ADC≌△BEA;

(2)若PQ=4,PE=1,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为(

A.∠BOF
B.∠AOD
C.∠COE
D.∠COF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边三角形ABC的边长为12,点PAC上一点,点DCB的延长线上,且BD=AP,连接PDAB于点E,PEAB于点F,则线段EF的长为(  )

A. 6 B. 5

C. 4.5 D. AP的长度有关

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.

(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于二次函数y=﹣2x2+1,下列说法错误的是(
A.图象开口向下
B.图象的对称轴为x=
C.函数最大值为1
D.当x>1时,y随x的增大而减小

查看答案和解析>>

同步练习册答案