精英家教网 > 初中数学 > 题目详情

【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积.
方法1:
方法2:
(2)观察图2请你写出下列三个代数式:(m+n)2 , (m-n)2 , mn之间的等量关系
(3)根据(2)题中的等量关系,解决如下问题:
①已知: ,求: 的值;
②已知: ,求: 的值.

【答案】
(1)(m﹣n)2,(m+n)2﹣4mn
(2)(m﹣n)2;(m+n)2﹣4mn;(m﹣n)2=(m+n)2﹣4mn
(3)解:∵a﹣b=5,ab=﹣6,

∴(a+b)2=(a﹣b)2+4ab=52+4×(﹣6)=25﹣24=1;

②解:由已知得:(a+ 2=(a﹣ 2+4a =12+8=9,

∵a>0,a+ >0,

∴a+ =3


【解析】解:(1)方法1:(m﹣n)2

方法2:(m+n)2﹣4mn;

( 2 )(m﹣n)2=(m+n)2﹣4mn;

所以答案是:(m﹣n)2;(m+n)2﹣4mn;(m﹣n)2=(m+n)2﹣4mn;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一个公共顶点,并且一个角的两边分别是另一个角的两边的_______,具有这种位置关系的两个角互为对顶角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,
(1)求证:DE=BD+CE.
(2)如果是如图2这个图形,我们能得到什么结论?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图锐角△ABC,若∠ABC=40°,∠ACB=70°,点D、E在边AB、AC上,CD与BE交于点H.

(1)若BE⊥AC,CD⊥AB,求∠BHC的度数.
(2)若BE、CD平分∠ABC和∠ACB,求∠BHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在六边形的顶点处分别标上数1, 2, 3, 4,5, 6,能否使任意三个相邻顶点处的三个数之和
(1)大于9?
(2)大于10?如能,请在图中标出来;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EF∥AD,∠1=∠2, ∠BAC=70°,将求∠AGD的过程填空完整。

解:∵EF∥AD
∴∠2=
又∵∠1=∠2
∴∠1=∠3(
∴AB∥
∵∠BAC+=180°(
∵∠BAC=70° ∴∠AGD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.

类似地,我们可以认识其他函数.

(1)把函数的图象上各点的纵坐标变为原来的 倍,横坐标不变,得到函数的图象;也可以把函数的图象上各点的横坐标变为原来的 倍,纵坐标不变,得到函数的图象.

(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.

(Ⅰ)函数的图象上所有的点经过④→②→①,得到函数 的图象;

(Ⅱ)为了得到函数的图象,可以把函数的图象上所有的点

A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥

(3)函数的图象可以经过怎样的变化得到函数的图象?(写出一种即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电子产品经过11月、12月连续两次降价,售价由3900元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是(  )

A. 3900(1+x)2=2500 B. 3900(1﹣x)2=2500

C. 3900(1﹣2x)=2500 D. 2500(1+x)2=3900

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x=﹣1是关于x的方程2x2+ax﹣2=0的一个根,则a=________

查看答案和解析>>

同步练习册答案