精英家教网 > 初中数学 > 题目详情

【题目】完成下列推理说明:

如图,已知B+∠BCD=180°B=∠D.求证:E=∠DFE

证明:∵∠B+∠BCD=180°(   ),

ABCD    

∴∠B=    

∵∠B=∠D( 已知 ),

∴ ∠ = ( 等量代换 )

ADBE   

∴∠E=∠DFE   

【答案】详见解析

【解析】

根据平行线的判定得出ABCD,根据平行线的性质得出∠B=DCE,求出∠DCE=D,根据平行线的判定得出ADBE,根据平行线的性质得出即可.

证明:∵∠B+BCD=180°( 已知 ),

ABCD 同旁内角互补,两直线平行),

∴∠B= DCE两直线平行,同位角相等 ),

又∵∠B=D( 已知 ),

DCE = D ( 等量代换 ),

ADBE内错角相等,两直线平行),

∴∠E=DFE两直线平行,内错角相等),

故答案为:同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为丰富学生课余生活,我校准备开设兴趣课堂.为了了解学生对绘画、书法、舞蹈、乐器这四个兴趣小组的喜爱情况,在全校进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息尚不完整),请根据图中提供的信息,解答下面的问题:

1)此次共调查了多少名同学?

2)将条形图补充完整,并计算扇形统计图中乐器部分的圆心角的度数;

3)如果我校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的25名学生,估计书法兴趣小组至少需要准备多少名教师?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长:中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的中国诗词大会海选比赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表

组别

海选成绩x

A

50≤x60

B

60≤x70

C

70≤x80

D

80≤x90

E

90≤x100

请根据所给信息,解答下列问题

①图1条形统计图中D组人数有多少?

②在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 ,表示C组扇形的圆心角的度数为 度;

③规定海选成绩在90分以上(包括90分)记为优等,请估计该校参加这次海选比赛的2000名学生中成绩优等的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】修正后的《水污染防治法》于201811日起施行,某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有两种型号的设备,其中每台的价格、月处理污水量如下表:

价格(万元/台)

12

10

处理污水量(吨/月)

240

200

经预算,该企业购买设备的资金不高于105万元.

1)请你设计该企业可能的购买方案;

2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,矩形ABCD中,对角线ACBD交于O点,CEBDEOFAB FBEDE=13OF=2cm,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的解析式为(  )

x

0

1

2

y

A. y=x2x B. y=x2+x

C. y=x2x+ D. y=x2+x+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.

(1)若∠ABC=70°,则∠MNA的度数是  

(2)连接NB,若AB=8cm,△NBC的周长是14cm.

①求BC的长;

②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.

(1)如图,求∠AOC的度数;

(2)如图,在∠AOD的内部作∠MON=90°,请直接写出∠AON∠COM之间的数量关系   

(3)在(2)的条件下,若OM∠BOC的角平分线,试说明∠AON=∠CON.

查看答案和解析>>

同步练习册答案