【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积最大,最大面积是多少?
【答案】(1)y= (x>0)(2)当k=3时,S△EFA有最大值,最大值为.
【解析】试题分析:(1)、首先得出点B的坐标,然后根据中点得出点F的坐标,最后利用待定系数法求出函数解析式;(2)、首先得出点E和点F的坐标,然后根据三角形的面积计算法则得出关于k的二次函数,然后根据函数的增减性得出最大值.
试题解析:(1)∵在矩形OABC中,OA=3,OC=2, ∴B(3,2),∵F为AB的中点,
∴F(3,1), ∵点F在反比例函数y=(k>0)的图象上, ∴k=3,
∴该函数的解析式为y=(x>0);
(2)由题意知E,F两点坐标分别为E(,2),F(3,),
∴S△EFA=AFBE=×k(3﹣k)=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+
当k=3时,S有最大值.
S最大值=.
科目:初中数学 来源: 题型:
【题目】已知直线a∥b,点M到直线a的距离是5 cm,到直线b的距离是3 cm,那么直线a和b之间的距离是( )
A. 2 cmB. 6 cmC. 8 cmD. 2 cm或8 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了估计湖里有多少条鱼,先从湖里捞了50条鱼做了记号,然后放回湖里,经过一段时间后,第二次再捞出200条鱼,其中有记号的鱼有10条,那么估计湖中有_____条鱼.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果.
(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com