精英家教网 > 初中数学 > 题目详情
4.关于x的一元二次方程3x2-2x+m=0的一个根是-1,则m的值为(  )
A.5B.-5C.1D.-1

分析 根据一元二次方程的解的定义把x=-1代入方法得到关于m的一次方程,然后解一次方程即可.

解答 解:把x=-1代入方程得3+2+m=0,解得m=-5.
故选B.

点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.若|2a-3|+(3b+2)2=0,则(ab)2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知$\frac{x-b}{a}$=2-$\frac{x-a}{b}$,且a+b=2,请化简并求值以下代数式:$\frac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}+\sqrt{x}}$+$\frac{\sqrt{x+1}+\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知.三角形的底边长为(2x+1)cm,高是(x-2)cm,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x=3时三角形增加的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:正方形纸片ABCD的边长为4,将该正方形纸片沿EF折叠(E,F分别在AB,CD边上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P.
(1)如图①,连接PE,若M是AD边的中点.①图中与△PMD相似的三角形是△AME∽△DPM,△MPD∽△FPN,△EMP∽△MDP;
②求△PMD的周长.
(2)如图②,随着落点M在AD边上移动(点M不与A、D重合),△PDM的周长是否发生变化?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、Cn在直线y=-$\frac{1}{2}$x+$\frac{7}{2}$上,顶点D1、D2、D3、…、Dn在x轴上,则第n个阴影小正方形的面积为$({\frac{2}{3})}^{2n-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=43°,则∠P的度数为94度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.用图象法解不等式:2x+1>-$\frac{1}{2}$x+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=-x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0)、B(0,3)两点.
(1)试求抛物线的解析式和直线AB的解析式;
(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB方向以$\sqrt{2}$个单位/秒的速度向终点B匀速运动,E、F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时△AEF为直角三角形?
(3)抛物线位于第一象限的图象上是否存在一点P,使△PAB面积最大?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案