精英家教网 > 初中数学 > 题目详情

作业宝如图,已知△ABC≌△DCE≌△HEF,三条对应边BC、CE、EF在同一条直线上,连接BH,分别交AC、DC、DE于点P、Q、K,其中S△PCQ=1,则图中三个阴影部分的面积和为________.

13
分析:根据全等三角形对应角相等,可以证明AC∥DE∥HF,再根据全等三角形对应边相等BC=CE=EF,然后利用平行线分线段成比例定理求出HF=3PC,KE=2PC,所以PC=DK,设△DQK的边DK为x,DK边上的高为h,表示出△DQK的面积,再根据边的关系和三角形的面积公式即可求出三部分阴影部分的面积.
解答:∵△ABC≌△DCE≌△HEF,
∴∠ACB=∠DEC=∠HFE,BC=CE=EF,
∴AC∥DE∥HF,
====
∴KE=2PC,HF=3PC,
又∵DK=DE-KE=3PC-2PC=PC,
∴△DQK≌△CQP(相似比为1)
设△DQK的边DK为x,DK边上的高为h,
xh=1,整理得xh=2,
S△BPC=x•2h=xh=2,
S四边形CEKQ=×3x•2h-2=3xh-2=3×2-1=6-1=5,
S△EFH=×3x•2h=3xh=6,
∴三个阴影部分面积的和为:2+5+6=13.
故答案为13.
点评:本题主要利用全等三角形的性质,找出阴影部分的图形边的关系和三角形的面积公式的解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案