精英家教网 > 初中数学 > 题目详情

【题目】边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2

(1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.
(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.

①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
②连接AP,当AP最大时,求AD′的值.(结果保留根号)

【答案】
(1)

解:当CC'= 时,四边形MCND'是菱形.

理由:由平移的性质得,CD∥C'D',DE∥D'E',

∵△ABC是等边三角形,

∴∠B=∠ACB=60°,

∴∠ACC'=180°﹣∠ACB=120°,

∵CN是∠ACC'的角平分线,

∴∠D'E'C'= ∠ACC'=60°=∠B,

∴∠D'E'C'=∠NCC',

∴D'E'∥CN,

∴四边形MCND'是平行四边形,

∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,

∴△MCE'和△NCC'是等边三角形,

∴MC=CE',NC=CC',

∵E'C'=2

∵四边形MCND'是菱形,

∴CN=CM,

∴CC'= E'C'=


(2)

解:①AD'=BE',

理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',

由(1)知,AC=BC,CD'=CE',

∴△ACD'≌△BCE',

∴AD'=BE',

当α=180°时,AD'=AC+CD',BE'=BC+CE',

即:AD'=BE',

综上可知:AD'=BE'.

②如图连接CP,

在△ACP中,由三角形三边关系得,AP<AC+CP,

∴当点A,C,P三点共线时,AP最大,

如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=

∴CP=3,

∴AP=6+3=9,

在Rt△APD'中,由勾股定理得,AD'= =2


【解析】(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;
②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点在格点上.

1作出与△ABC关于x轴对称的图形△A1B1C1

2)求出A1B1C1三点坐标;

3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是该抛物线上的点,则y1<y2<y3 , 正确的个数有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是( )

A.(﹣2,1)
B.(﹣1,1)
C.(1,﹣2)
D.(﹣1,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.

(1)求∠APB的度数;
(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF//AD交AC于F.若AB=11,AC=15,则FC的长为( )

A.11
B.12
C.13
D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.
请问:
(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?
(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn

查看答案和解析>>

同步练习册答案