精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为

【答案】6
【解析】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,

∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,

∵CB′∥AB,

∴∠B′CA′=∠D,

∴△CAD∽△B′A′C,

=

=

解得AD=8,

∴BD=AD﹣AB=8﹣2=6.

故答案为:6.

根据△ABC绕点C按逆时针方向旋转得到△A′B′C,得到AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,由CB′∥AB,得到∠B′CA′=∠D,△CAD∽△B′A′C,得到AD=8,BD=AD﹣AB=8﹣2=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为;抛物线的解析式为
(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中A(32)B(43)C(11)

(1)在图中作出ABC关于y轴对称图形A1B1C1

(2)写出A1B1C1的坐标分别是A1(______)B1(______)C1(______)

3)△ABC的面积是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1中的长方形长为宽的3倍,将四个这样的长方形拼成图2中的大正方形.

1)若中间小正方形的面积是,问图1中的长方形的面积是多少

2)若大正方形的面积就比小正方形的面积大,求中间小正方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:

现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲同学手中藏有三张分别标有数字 、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果;
(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= ,cos∠ACD= ,求tan∠AEC的值及CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.

(1)填空:点C的坐标为(),点D的坐标为();
(2)设点P的坐标为(a,0),当|PD﹣PC|最大时,求α的值并在图中标出点P的位置;
(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强家有一块三角形菜地,量得两边长分别为,第三边上的高为.请你帮小强计算这块菜地的面积.(结果保留根号)

查看答案和解析>>

同步练习册答案