精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c经过点A(0,4)、B(2,4),它的最高点纵坐标为,点P是第一象限抛物线上一点且PA=PO,过点P的直线分别交射线AB、x正半轴于C、D.设AC=m,OD=n.
(1)求此抛物线的解析式;
(2)求点P的坐标及n关于m的函数关系式;
(3)连接OC交AP于点E,如果以A、C、E为顶点的三角形与△ODP相似,求m的值.

【答案】分析:(1)已知抛物线的顶点纵坐标以及对称轴,根据待定系数法即可求得二次函数的解析式;
(2)首先求得A点的坐标,P的纵坐标是A的纵坐标的一半,即可求得P的纵坐标,代入二次函数解析式即可求得P的坐标;
(3)分△ACE∽△ODP和△ACE∽△OPD,两种情况,根据相似三角形的对应边的比相等,即可求得m的值.
解答:解:(1)设函数解析式为
解出


(2)求出点P的坐标为(3,2),
由梯形中位线定理得,AC+OD=3×2=6,m+n=6,
∴n=6-m(0≤m≤6);

(3)方法一:①当△ACE∽△ODP时(如图1),∠ACO=∠ODP,
∵AB∥x轴,∴∠ACO=∠COD
∴∠COD=∠ODP,OC=CD,又CF⊥OD,∴AC=OF=OD,
∴m=(6-m)解得:m=2
②当△ACE∽△OPD时(如图2),∠ACO=∠OPD,∵∠ACO=∠COD
∴∠COD=∠OPD,可得△OPD∽△COD,可得OD2=DP•DC,
即OD2=CD2=(6-m)2=2,解得:m=
方法二:得出AE=
1当△ACE∽△ODP时,可求出m=2
②当△ACE∽△OPD时,可求出m=
点评:本题考查了二次函数解析式的确定、相似三角形的性质等知识点.(3)题中,要根据相似三角形对应边和对应角的不同分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案