精英家教网 > 初中数学 > 题目详情

【题目】在半径等于5cm的圆内有长为5cm的弦,则此弦所对的圆周角为(

A.120° B.30°或120°

C.60° D.60°或120°

【答案】D.

【解析】

试题解析:根据题意画出相应的图形为:

连接OA,OB,在优弧AB上任取一点E,连接AE,BE,在劣弧AB上任取一点F,连接AF,BF,

过O作OD⊥AB,则D为AB的中点,

∵AB=5cm,∴AD=BD=cm,

OA=OB=5,OD⊥AB,

∴OD平分∠AOB,∠AOD=∠BOD=∠AOB,

在直角三角形AOD

sinAOD=

∴∠AOD=60°,

∴∠AOB=120°,

又圆心角∠AOB与圆周角∠AEB所对的弧都为

∴∠AEB=∠AOB=60°,

∵四边形AEBF为圆O的内接四边形,

∴∠AFB+∠AEB=180°,

∴∠AFB=180°-∠AEB=120°,

则此弦所对的圆周角为60°或120°.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线x轴相交于AB两点,点P是抛物线上一点,且

求该抛物线的表达式;

设点为抛物线上的一个动点,当点M在曲线BA之间含端点移动时,求的最大值及取得最大值时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数yk1xb的图象与反比例函数y (x<0)的图象相交于点A(-1,2)、点B(-4,n).

(1)求此一次函数和反比例函数的表达式;

(2)AOB的面积;

(3)x轴上存在一点P,使PAB的周长最小,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O顺时针旋转α α360° ),使点A仍在双曲线上,则α_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CEBD交于点G,连接AG,那么∠AGD的底数是______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小颖为班级联欢会设计了一个配紫色游戏:下面是两个可以自由转动的转盘,每个转盘被分 成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘 A 转出了红色,转盘 B 转出 了蓝色,那么配成了紫色.

1)利用树状图或列表的方法计算配成紫色的概率.

(2)小红和小亮参加这个游戏,并约定配成紫色小红赢,两个转盘转出同种颜色,小亮赢.这个约定对双方公平吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O经过点C,过点C作⊙O的切线交AB的延长线于点PD是⊙O上于点,且弧BC=弧CD,弦AD的延长线交切线PC于点E,连接AC

1)求∠E的度数;

2)若⊙O的直径为5sinP,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把两条中线互相垂直的三角形称为中垂三角形.例如图1,图2,图3中,AFBEABC的中线,AFBE,垂足为P.像ABC这样的三角形均为中垂三角形.设BCaACbABc

特例探索

1)①如图1,当∠ABE45°c2时,a   b   

②如图2,当∠ABE30°c4时,求ab的值.

归纳证明

2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.

3)利用(2)中的结论,解答下列问题:

在边长为3的菱形ABCD中,O为对角线ACBD的交点,EF分别为线段AODO的中点,连接BECF并延长交于点MBMCM分别交AD于点GH,如图4所示,求MG2+MH2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;

(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;

(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

查看答案和解析>>

同步练习册答案