精英家教网 > 初中数学 > 题目详情
如图,直线y=-
4x
3
+8与x轴、y轴分别交于A、B两点,M为OB上一点,若将△ABM沿AM折叠,点B恰好落在x轴上的B′处,则直线AM的解析式为______.
当x=0时,y=8;当y=0时,x=6,
∴OA=6,OB=8,
∴AB=
62+82
=10,
根据已知得到BM=B'M,
AB'=AB=10,
∴OB'=4,设BM=x,则B'M=x,
OM=8-x,在直角△B'MO中,x2=(8-x)2+42
∴x=5,
∴OM=3,
∴M(0,3),
设直线AM的解析式为y=kx+b,把M(0,3),A(6,0)代入其中
3=b
0=6k+b

∴k=-
1
2
,b=3,
∴y=-
x
2
+3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某品牌产品公司献爱心,捐出了二月份的全部利润.已知该公司二月份只售出了A、B、C三种型号的产品若干件,每种型号产品不少于4件,二月份支出包括这批产品进货款20万元和其他各项支出(含人员工资和杂项开支)1.9万元.这三种产品的售价和进价如下表,人员工资y1(万元)和杂项支出y2(万元)分别与销售总量x(件)成一次函数关系(如图).
型号
进价(万元/件)0.50.80.7
售价(万元/件)0.81.20.9
(1)求y1与x的函数关系;
(2)求二月份该公司的总销售量;
(3)设公司二月份售出A种产品t件,二月份总销售利润为W(万元),求W与t的函数关系式及t的取值范围;
(4)请求出该公司这次爱心捐款金额的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

药品研究所开发一种抗菌素新药,经过多年的动物实验后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(h)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系xoy中,一次函数y=
3
4
x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)求直线A′B′的解析式;
(2)若直线A′B′与直线AB相交于点C,求S△A?BC:S△ABO的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象过点(2,-5)与(-3,5).
(1)求这个一次函数的解析式;
(2)在网格中建立坐标系,并画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线L:y=-
1
2
x+2
与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式;
(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为(  )
A.y=100t(15<t≤23)B.y=100t-500(15<t≤23)
C.y=50t+650(15<t≤23)D.y=100t+500(15<t≤23)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

A,B两个商场平时以同样的价格出售同样的产品,在中秋节期间让利酬宾.A商场所有商品8折销售,B商场消费超过200元后,可以在这家商场7折购物.试问如何选择商场购物更经济?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(升)与行驶时间t(小时)的关系如下表,
行驶时间t(时)0123
油箱余油量y(升)100846852
与行驶路程x(千米)的关系如图.则A型车在实验中的速度是______千米/时.

查看答案和解析>>

同步练习册答案