精英家教网 > 初中数学 > 题目详情

【题目】已知如图,在ABC中,∠B45°,点DBC边的中点,DEBC于点D,交AB于点E,连接CE

1)求∠AEC的度数;

2)请你判断AEBEAC三条线段之间的等量关系,并证明你的结论.

【答案】190°;(2AE2+EB2AC2,证明见解析.

【解析】

1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;

2)根据勾股定理解答.

解:(1)∵点DBC边的中点,DEBC

DE是线段BC的垂直平分线,

EBEC

∴∠ECB=∠B45°

∴∠AEC=∠ECB+B90°

2AE2+EB2AC2

∵∠AEC90°

AE2+EC2AC2

EBEC

AE2+EB2AC2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边ABC中,边长为6DBC边上的动点,∠EDF=60°

1)求证:BDE∽△CFD

2)当BD=1CF=3时,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等腰三角形的一个内角是则它的另外两个内角的度数是__________,若等腰三角形的一个内角是,则它的另外两个内角的度数__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.

(1)试说明:AE=AF;

(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,动点EF分别从DC两点同时出发,以相同的速度在直线DCCB上移动.

1)如图1,当点E在边DC上自DC移动,同时点F在边CB上自CB移动时,连接AEDF交于点P,请你写出AEDF的数量关系和位置关系,并说明理;

2)如图2,当EF分别在边CDBC的延长线上移动时,连接AEDF,(1)中的结论还成立吗?(请你直接回答,不需证明);连接AC,求ACE为等腰三角形时CECD的值;

3)如图3,当EF分别在直线DCCB上移动时,连接AEDF交于点P,由于点EF的移动,使得点P也随之运动,请你画出点P运动路径的草图.AD=2,试求出线段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCDEF中,已有条件AB=DE,还需要添加两个条件才能使ABC≌△DEF.不能添加的一组条件是(

A. B=EBC=EF B. A=DBC=EF

C. A=D,∠B=E D. BC=EFAC=DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,PAO的切线,A是切点,BPO交于点C

(1)若AB=4,∠ABP=60°,求PB的长;

(2)若CDO的切线.求证:DAP的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACADBC于点DEAB上一点,以CE为直径的OBC于点F,连接DO,且∠DOC=90°.

(1)求证:ABO的切线;

(2)若DF=2,DC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的O上.

(1)求证:BCO的切线;

(2)若DC=4,AC=6,求圆心OAD的距离.

查看答案和解析>>

同步练习册答案