精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的O上.

(1)求证:BCO的切线;

(2)若DC=4,AC=6,求圆心OAD的距离.

【答案】(1)详见解析;(2)圆心OAD的距离是

【解析】

(1)连接OD,求出∠CAD=OAD=ODA,得出ODAC,推出ODBC,根据切线判定推出即可;

(2)根据含30度角的直角三角形性质求出BO,AC,根据勾股定理求出BD、BC,求出CD,根据勾股定理求出AD即可.

(1)证明:连接OD

OAOD

∴∠OADODA

AD平分∠BAC

∴∠OADCAD

∴∠ODACAD

ODAC

又∵∠C=90°,

∴∠ODBC=90°,

ODBC

BC是⊙O的切线.

(2)过OOFADF

由勾股定理得:AD

DFAD

∵∠OFDC=90°,ODACAD

∴△ACD∽△DFO

FO

即圆心OAD的距离是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,在ABC中,∠B45°,点DBC边的中点,DEBC于点D,交AB于点E,连接CE

1)求∠AEC的度数;

2)请你判断AEBEAC三条线段之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),yx之间的函数图象如图所示

1)求甲车从A地到达B地的行驶时间;

2)求甲车返回时yx之间的函数关系式,并写出自变量x的取值范围;

3)求乙车到达A地时甲车距A地的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF在菱形ABCD的对边上,AEBC.∠1=∠2

1)判断四边形AECF的形状,并证明你的结论.

2)若AE4AF2,试求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的中线BDCE交于点OFG分别是BOCO的中点.

1)填空:四边形DEFG  四边形.

2)若四边形DEFG是矩形,求证:ABAC

3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BABC,以AB为直径作O,交AC于点D,连接DB,过点DDEBC,垂足为E

(1)求证:ADCD

(2)求证:DEO的切线.

(3)若∠C=60°,DE,求O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABO的直径,ABACBCO于点DDEACE

(1)求证:DEO的切线;

(2)连接BE交圆于F,连AF并延长EDG,若GE=2,AF=3,求∠EAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王大伯要做一张如图所示的梯子,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A7B7=0.8m.则A3B3踏板的长度为(  )

A. 0.6m B. 0.65m C. 0.7m D. 0.75m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标平面内,二次函数图象的顶点为A1﹣4),且过点B30).

1)求该二次函数的解析式;

2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

查看答案和解析>>

同步练习册答案