【题目】已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.
(1)求证:DE为⊙O的切线;
(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.
【答案】(1)详见解析;(2)∠EAF的度数为30°.
【解析】
(1)连接OD,如图,先证明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根据切线的判定定理得到结论;
(2)利用圆周角定理得到∠AFB=90°,再证明Rt△GEF∽△Rt△GAE,利用相似比得到,于是可求出GF=1,然后在Rt△AEG中利用正弦定义求出∠EAG的度数即可.
(1)证明:连接OD,如图,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE为⊙O的切线;
(2)∵AB为直径,
∴∠AFB=90°,
∵∠EGF=∠AGF,
∴Rt△GEF∽△Rt△GAE,
∴,即,
整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
在Rt△AEG中,sin∠EAG=,
∴∠EAG=30°,
即∠EAF的度数为30°.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PA是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=4,∠ABP=60°,求PB的长;
(2)若CD是⊙O的切线.求证:D是AP的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y﹣2与x成正比例,当x=2时,y=6.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)若DC=4,AC=6,求圆心O到AD的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:
(1)MC是⊙O的切线;
(2)△DCF是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么△ABP的面积与点P运动的路程之间的函数图象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;
(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方格中单位长度为1的小正方形的顶点叫格点,点和点是格点,位置如图:
(1)线段的长是______________;
(2)在图1中确定格点,使为直角三角形,画出一个这样的;
(3)在图2中确定格点,使为等腰三角形,画出一个这样的;
(4)在图2中满足题(3)条件的格点共有___________个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com