精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,BABC,以AB为直径作O,交AC于点D,连接DB,过点DDEBC,垂足为E

(1)求证:ADCD

(2)求证:DEO的切线.

(3)若∠C=60°,DE,求O半径的长.

【答案】(1)详见解析;(2)详见解析;(3)O半径的长为4.

【解析】

(1)先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得AD=CD;

(2)连接OD,如图,先证明ODBAC的中位线,则ODBC,再利用DEBC得到ODDE,然后根据切线的判定定理得到结论;

(3)先在RtCDE中计算出CE=DE=2,CD=2CE=4,再利用∠A=C=60°,AD=CD=4,然后在RtADB中利用AB=2AD求解.

(1)证明:∵AB为直径,

∴∠ADB=90°,

BABC

ADCD

(2)证明:连接OD,如图,

ADCDAOOB

ODBAC的中位线,

ODBC

DEBC

ODDE

DE为⊙O的切线;

(3)在RtCDE中,∠C=60°,DE

CEDE×2=2,

CD=2CE=4,

∵∠AC=60°,ADCD=4,

RtADB中,AB=2AD=8,

即⊙O半径的长为4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCDEF中,已有条件AB=DE,还需要添加两个条件才能使ABC≌△DEF.不能添加的一组条件是(

A. B=EBC=EF B. A=DBC=EF

C. A=D,∠B=E D. BC=EFAC=DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线ACBD相交于点O,∠ADB30°EBC边上一点,∠AEB45°CFBDF.下列结论:①BECD,②BF3DF,③AEAO,④CECF.正确的结论有(  )

A. ①②B. ②③C. ①②④D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在O的内接四边形ABCD中,BCD=120°,CA平分∠BCD.

(1)求证:ABD是等边三角形;

(2)若BD=3,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的O上.

(1)求证:BCO的切线;

(2)若DC=4,AC=6,求圆心OAD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每一个小正方形的边长为1△ABC的三个顶点都在格点上,AC的坐标分别是(46)(14)

(1)请在图中的网格平面内建立平面直角坐标系;

(2)请画出△ABC向右平移6个单位的A1B1C1,并写出C1的坐标   

(3)请画出△ABC关于原点O对称的△A2B2C2 并写出点C2的坐标   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BC是⊙O的直径,点DBC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求证:直线AD是⊙O的切线;

(2)若AEBC,垂足为M,O的半径为4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C OB 的中点,D、E 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形中,是对角线上一个动点,连结,过

分别为垂足.

1)求证:

2)①写出三条线段满足的等量关系,并证明;②求当时,的长

查看答案和解析>>

同步练习册答案