【题目】如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.
(1)求证:AD=CD.
(2)求证:DE为⊙O的切线.
(3)若∠C=60°,DE=,求⊙O半径的长.
【答案】(1)详见解析;(2)详见解析;(3)⊙O半径的长为4.
【解析】
(1)先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得AD=CD;
(2)连接OD,如图,先证明OD为△BAC的中位线,则OD∥BC,再利用DE⊥BC得到OD⊥DE,然后根据切线的判定定理得到结论;
(3)先在Rt△CDE中计算出CE=DE=2,CD=2CE=4,再利用∠A=∠C=60°,AD=CD=4,然后在Rt△ADB中利用AB=2AD求解.
(1)证明:∵AB为直径,
∴∠ADB=90°,
∵BA=BC,
∴AD=CD;
(2)证明:连接OD,如图,
∵AD=CD,AO=OB,
∴OD为△BAC的中位线,
∴OD∥BC,
∴DE⊥BC,
∴OD⊥DE,
∴DE为⊙O的切线;
(3)在Rt△CDE中,∠C=60°,DE=,
∴CE=DE=×2=2,
∴CD=2CE=4,
∵∠A=∠C=60°,AD=CD=4,
在Rt△ADB中,AB=2AD=8,
即⊙O半径的长为4.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是( )
A. ∠B=∠E,BC=EF B. ∠A=∠D,BC=EF
C. ∠A=∠D,∠B=∠E D. BC=EF,AC=DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,对角线AC,BD相交于点O,∠ADB=30°,E为BC边上一点,∠AEB=45°,CF⊥BD于F.下列结论:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正确的结论有( )
A. ①②B. ②③C. ①②④D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.
(1)求证:△ABD是等边三角形;
(2)若BD=3,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)若DC=4,AC=6,求圆心O到AD的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标 ;
(3)请画出△ABC关于原点O对称的△A2B2C2 , 并写出点C2的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C 是 OB 的中点,D、E 分 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,是对角线上一个动点,连结,过作,,
,分别为垂足.
(1)求证:;
(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com