精英家教网 > 初中数学 > 题目详情

【题目】如图,在O的内接四边形ABCD中,BCD=120°,CA平分∠BCD.

(1)求证:ABD是等边三角形;

(2)若BD=3,求O的半径.

【答案】(1)详见解析;(2).

【解析】

(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.EB=x,则ED=2x,根据勾股定理列方程求解即可.

解:(1)∵∠BCD=120°,CA平分∠BCD,

∴∠ACD=ACB=60°,

由圆周角定理得,∠ADB=ACB=60°,ABD=ACD=60°,

∴△ABD是等边三角形;

(2)连接OB、OD,作OHBDH,

DH=BD=

BOD=2BAD=120°,

∴∠DOH=60°,

RtODH中,OD==

∴⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC是O的直径,PA切O于点A,点B是O上的一点,且∠BAC=30°,∠APB=60°.

(1)求证:PB是O的切线;

(2)O的半径为2,求弦AB及PA,PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校运动会需购买AB两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.

1)求AB两种奖品的单价各是多少元?

2)学校计划购买AB两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 yx2+2x 的顶点为 A,直线 yx+2 与抛物线交于 BC 两点.

(1)求 ABC 三点的坐标;

(2)作 CDx 轴于点 D,求证:△ODC∽△ABC

(3)若点 P 为抛物线上的一个动点,过点 P PMx 轴于点 M,则是否还存在除 C 点外的其他位置的点,使以 OPM 为顶点的三角形与△ABC 相似? 若存在,请求出这样的 P 点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EF在菱形ABCD的对边上,AEBC.∠1=∠2

1)判断四边形AECF的形状,并证明你的结论.

2)若AE4AF2,试求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有( )

A.1种B.2种C.3种D.4种

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BABC,以AB为直径作O,交AC于点D,连接DB,过点DDEBC,垂足为E

(1)求证:ADCD

(2)求证:DEO的切线.

(3)若∠C=60°,DE,求O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是一块锐角三角形材料,高线AH8 cm,底边BC10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EFBC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )

A. 40 cm2 B. 20 cm2

C. 25 cm2 D. 10 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:

b2=4ac;abc>0;a>c;4a﹣2b+c>0,其中正确的个数有(

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

同步练习册答案