【题目】如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标 ;
(3)请画出△ABC关于原点O对称的△A2B2C2 , 并写出点C2的坐标 .
【答案】(1)见解析;(2)见解析; (5,4) ;(3)见解析; (1,-4).
【解析】
(1)根据A、C两点的坐标建立平面直角坐标系即可;
(2)根据图形平移的性质画出△A1B1C1′,然后写出点C1坐标;
(3)分别作出点A、B、C关于原点O的对称点A2、B2、C2,连接A2、B2、C2即可得到△ABC关于原点O对称的△A2B2C2,然后写出点C2坐标.
解:(1)如图,建立平面直角坐标系;
(2)如图,△A1B1C1为所作;点C1的坐标为(5,4) ;
(3)如图,△A2B2C2为所作;点C2的坐标为(1,-4).
故答案为:(1)见解析;(2)见解析; (5,4) ;(3)见解析; (1,-4).
科目:初中数学 来源: 题型:
【题目】某校实行学案式教学,需印制若干份教学学案.印刷厂有,甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.
(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________.
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线 y=x2+2x 的顶点为 A,直线 y=x+2 与抛物线交于 B,C 两点.
(1)求 A,B,C 三点的坐标;
(2)作 CD⊥x 轴于点 D,求证:△ODC∽△ABC;
(3)若点 P 为抛物线上的一个动点,过点 P 作 PM⊥x 轴于点 M,则是否还存在除 C 点外的其他位置的点,使以 O,P,M 为顶点的三角形与△ABC 相似? 若存在,请求出这样的 P 点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有( )
A.1种B.2种C.3种D.4种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.
(1)求证:AD=CD.
(2)求证:DE为⊙O的切线.
(3)若∠C=60°,DE=,求⊙O半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润售价进价)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )
A. 40 cm2 B. 20 cm2
C. 25 cm2 D. 10 cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
(1)根据图示填写下表:
班级 | 平均数(分) | 中位数(分) | 众数(分) |
九(1) | 85 | ||
九(2) | 85 | 100 |
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司营销A,B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系。
当x=1时,y=1.4;当x=3时,y=3.6。
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系。
根据以上信息,解答下列问题:
(1)求二次函数解析式;
(2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com