Ò»´Îº¯Êýy=kx+b£¨k¡Ù0£©µÄͼÏóÊÇÒ»ÌõÖ±Ïߣ¬ËüÓëxÖáµÄ½»µã×ø±êÊÇ£¨
-£¬0£©£¬ÓëyÖáµÄ½»µã×ø±êÊÇ£¨0£¬b£©£¬ÕâÀÎÒÃǰÑ
-½Ð×öÒ»´Îº¯ÊýͼÏóÔÚxÖáÉϵĽؾàm£¬°Ñb½Ð×öÒ»´Îº¯ÊýͼÏóÔÚyÖáÉϵĽؾàn£»¶ø°Ñ
-½Ð×öÒ»´Îº¯ÊýͼÏóµÄбÂÊ£®
ÀýÈ磺һ´Îº¯Êýy=2x+2µÄͼÏóÓëxÖáµÄ½»µã×ø±êΪ£¨-1£¬0£©£¬ÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬2£©£¬ÄÇôÔÚxÖáÉϵĽؾàΪ-1£¬ÔÚyÖáÉϵĽؾàΪ2£¬Í¨¹ý
-¿ÉµÃ¸Ãº¯ÊýµÄͼÏóµÄбÂÊΪ2£®
ͨ¹ýÔĶÁÉÏÊöÄÚÈÝ£¬Íê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©Ð´³öÒ»´Îº¯Êýy=-2x-3Óë×ø±êÖáµÄ½»µã£»
ÓëxÖáµÄ½»µã×ø±êÊÇ£º
ÓëyÖáµÄ½»µã×ø±êÊÇ£º
£¨0£¬-3£©
£¨0£¬-3£©
£¨2£©Ð´³öÒ»´Îº¯Êýy=-2x-3ÔÚ×ø±êÖáÉϵĽؾࣻ
ÔÚxÖáÉϵĽؾàÊÇ
ÔÚyÖáÉϵĽؾàÊÇ
-3
-3
£¨3£©Çó³ö¸ÃͼÏóµÄбÂÊ£»
£¨4£©Ö±½Óд³öÒ»´Îº¯Êýy=3x+5µÄͼÏóµÄбÂÊÊÇ
3
3
£®