精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.

【答案】解:在Rt△ACB中,∠B=30°,∠ACB=90°,
∴∠A=90°﹣30°=60°,
∵CD⊥AB,
∴∠ADC=90°,
∴∠ACD=30°,
在Rt△ACD中,AC=a,
∴AD= a,
由勾股定理得:CD= =
同理得:FC= × = ,CH= × =
在Rt△HCI中,∠I=30°,
∴HI=2HC=
由勾股定理得:CI= =
答:CI的长为
【解析】在Rt△ACD中,利用30度角的性质和勾股定理求CD的长;同理在Rt△ECD中求FC的长,在Rt△FCG中求CH的长;最后在Rt△HCI中,利用30度角的性质和勾股定理求CI的长.
【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,BAD=C=90°,AB=AD,AEBC于E,若线段AE=5,则S四边形ABCD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿DEEF翻折,顶点AB均落在点O处,且EAEB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为(  )

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,ACB=90°,点D、E在AB上,将ACDBCE分别沿CD、CE翻折,点A、B分别落在点A′、B′的位置,再将A′CDB′CE分别沿A′C、B′C翻折,点D与点E恰好重合于点O,则A′OB′的度数是( )

A.90° B.120° C.135° D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣3|﹣(2016+sin30°)0﹣(﹣ ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:

月用水量(吨)

3

4

5

7

8

9

10

户 数

4

3

5

11

4

2

1

(1)求这30户家庭月用水量的平均数,众数和中位数;

(2)根据上述数据,试估计该社区的月用水量;

(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m吨部分加倍收费,你认为上述问题中的平均数、众数、中位数中哪一个量作为月基本用水量比较合理?简述理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下是某省2010年教育发展情况有关数据:

全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高5万人,其它11万人.

请将上述资料中的数据按下列步骤进行统计分析.

1)整理数据:请设计一个统计表,将以上数据填入表格中.

2)描述数据:下图是描述全省各级各类学校数的扇形统计图,请将它补充完整.

3)分析数据:

分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数在校学生数)

根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)

从扇形统计图中,你得出什么结论?(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 甲、乙两名车工都加工要求尺寸是直径10毫米的零件.从他们所生产的零件中,各取5件,测得直径如下(单位:毫米)

甲:10.05, 10.02,9.97,9.95,10.01

乙:9.99,10.02,10.02,9.98,10.01

分别计算两组数据的标准差(精确到0.01),说明在尺寸符合规格方面,谁做得较好?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

查看答案和解析>>

同步练习册答案