精英家教网 > 初中数学 > 题目详情
9、已知:如图在△ABC中,AD平分∠BAC,AD⊥BC,则△ACD≌△ABD的根据是
ASA
分析:已知两角和一个公共边,则其全等的根据是ASA.要根据已知条件的位置选择判定方法.
解答:解:∵AD平分∠BAC,AD⊥BC
∴∠BAD=∠CAD,∠BDA=∠CDA=90°
∵AD=AD
∴△ACD≌△ABD(ASA).
故填ASA.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图在△ABC中,DE∥BC,
AD
DB
=
1
3
,则
DE
BC
=(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图在△ABC中,∠C=90°,BD是∠ABC的内角平分线,BC=2
3
,BD=4,求AB和AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,∠ACB=90°,AC=8,BC=6,CD、CE分别是斜边AB上的中线和高.则下列结论错误的是(  )

查看答案和解析>>

同步练习册答案