14£®Èçͼ£¬Ò»Ö»ÎÏÅ£A´ÓÔ­µã³ö·¢ÏòÊýÖḺ·½ÏòÔ˶¯£¬Í¬Ê±£¬ÁíÒ»Ö»ÎÏÅ£BÒ²´ÓÔ­µã³ö·¢ÏòÊýÖáÕý·½ÏòÔ˶¯£¬3$\sqrt{2}$Ãëºó£¬Á½ÎÏÅ£Ïà¾à15¸öµ¥Î»³¤¶È£®ÒÑÖªÎÏÅ£A¡¢BµÄËٶȱÈÊÇ1£º4£¬£¨Ëٶȵ¥Î»£ºµ¥Î»³¤¶È/Ã룩
£¨1£©Çó³öÁ½¸öÎÏÅ£Ô˶¯µÄËÙ¶È£¬²¢ÔÚÊýÖáÉÏ£¨Í¼1£©±ê³öA¡¢B´ÓÔ­µã³ö·¢Ô˶¯3$\sqrt{2}$ÃëʱµÄλÖã»
£¨2£©ÈôÎÏÅ£A¡¢B´Ó£¨1£©ÖеÄλÖÃͬʱÏòÊýÖḺ·½ÏòÔ˶¯£¬¼¸Ãëʱ£¬Ô­µãÇ¡ºÃ´¦ÔÚÁ½Ö»ÎÏÅ£µÄÕýÖм䣿
£¨3£©ÈôÎÏÅ£A¡¢B´Ó£¨1£©ÖеÄλÖÃͬʱÏòÊýÖḺ·½ÏòÔ˶¯Ê±£¬ÁíÒ»ÎÏÅ£CҲͬʱ´ÓÎÏÅ£BµÄλÖóö·¢ÏòÎÏÅ£AÔ˶¯£¬µ±Óöµ½ÎÏÅ£Aºó£¬Á¢¼´·µ»ØÏòÎÏÅ£BÔ˶¯£¬Óöµ½ÎÏÅ£BºóÓÖÁ¢¼´·µ»ØÏòÎÏÅ£AÔ˶¯£¬Èç´ËÍù·µ£¬Ö±µ½B×·ÉÏAʱ£¬ÎÏÅ£CÁ¢¼´Í£Ö¹Ô˶¯£®ÈôÎÏÅ£CÒ»Ö±ÒÔ2$\sqrt{5}$µ¥Î»³¤¶È/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£¬ÄÇôÎÏÅ£C´Ó¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯£¬ÐÐÊ»µÄ·³ÌÊǶàÉÙ¸öµ¥Î»³¤¶È£¿

·ÖÎö £¨1£©ÉèÎÏÅ£AµÄËÙ¶ÈΪxµ¥Î»³¤¶È/Ã룬ÎÏÅ£BµÄËÙ¶ÈΪ4xµ¥Î»³¤¶È/Ã룬¸ù¾ÝÁ½ÎÏÅ£Ïà¾à15¸öµ¥Î»Áгö·½³ÌÇó½â¼´¿É£»
£¨2£©¸ù¾ÝÏà·´ÊýµÄ¶¨Ò壬ÎÏÅ£A¡¢Bµ½Ô­µãµÄ¾àÀëÏàµÈ£¬·Ö±ð±íʾ³öÎÏÅ£A¡¢BËù¶ÔÓ¦µÄÊýµÄ¾ø¶ÔÖµ£¬È»ºóÁгö·½³ÌÇó½â¼´¿É£»
£¨3£©ÉèyÃëºóÎÏÅ£B×·ÉÏÎÏÅ£A£¬¸ù¾ÝÎÏÅ£B±ÈÎÏÅ£AµÄ·³Ì¶à15Áгö·½³Ì£¬Çó½âµÃµ½Ê±¼ä£¬ÔÙ¸ù¾Ý·³Ì=ËÙ¶È¡Áʱ¼ä½øÐмÆËã¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨1£©ÉèÎÏÅ£AµÄËÙ¶ÈΪxµ¥Î»³¤¶È/Ã룬ÎÏÅ£BµÄËÙ¶ÈΪ4xµ¥Î»³¤¶È/Ã룬
¸ù¾ÝÌâÒ⣬3$\sqrt{2}$£¨x+4x£©=15£¬
½âµÃ£ºx=$\frac{\sqrt{2}}{2}$£¬
¼´£ºÎÏÅ£AµÄËÙ¶ÈΪ$\frac{\sqrt{2}}{2}$µ¥Î»³¤¶È/Ã룬ÎÏÅ£BµÄËÙ¶ÈΪ2$\sqrt{2}$µ¥Î»³¤¶È/Ã룬
3$\sqrt{2}$Ãëʱ£¬ÎÏÅ£AµÄλÖÃÔÚ-$\frac{3}{2}\sqrt{2}$£¬ÎÏÅ£BµÄλÖÃÔÚ6$\sqrt{2}$£¬
ÔÚͼ1Éϱê×¢ÈçÏ£º

£¨2£©ÉèxÃëʱԭµãÇ¡ºÃ´¦ÔÚÁ½¸öÎÏÅ£µÄÕýÖм䣬
ÒÀÌâÒâµÃ£¬6$\sqrt{2}$-4x=$\frac{3}{2}\sqrt{2}$+x£¬
½âµÃ£ºx=$\frac{9}{10}\sqrt{2}$£»
£¨3£©ÉèyÃëºóÎÏÅ£B×·ÉÏÎÏÅ£A£¬
ÒÀÌâÒâµÃ£¬2$\sqrt{2}$y-$\frac{\sqrt{2}}{2}$y=15£¬
½âµÃ£ºy=5$\sqrt{2}$£¬
5$\sqrt{2}$¡Á2$\sqrt{5}$=10$\sqrt{10}$£¬
´ð£ºC´Ó¿ªÊ¼Ô˶¯µ½Í£Ö¹Ô˶¯£¬ÐÐÊ»µÄ·³ÌÊÇ10$\sqrt{10}$¸öµ¥Î»³¤¶È£®

µãÆÀ ±¾Ì⿼²éÁËÒ»ÔªÒ»´Î·½³ÌµÄÓ¦Ó㬽âÌâ¹Ø¼üÊÇÒª¶Á¶®ÌâÄ¿µÄÒâ˼£¬¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£¬ÕÒ³öºÏÊʵĵÈÁ¿¹ØÏµÁгö·½³Ì£¬ÔÙÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ë³´ÎÁ¬½áÈÎÒâËıßÐθ÷±ßÖеãËùµÃµ½µÄËıßÐÎÒ»¶¨ÊÇ£¨¡¡¡¡£©
A£®Æ½ÐÐËıßÐÎB£®ÁâÐÎC£®¾ØÐÎD£®Õý·½ÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½âÈýÔªÒ»´Î·½³Ì×飺$\left\{\begin{array}{l}{\frac{x}{10}=\frac{y}{5}=\frac{z}{7}}\\{3x+2z=44}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª£ºa+$\frac{1}{a}$=m£®
£¨1£©µ±m=$\sqrt{5}$£¬Çóa2+$\frac{1}{{a}^{2}}$µÄÖµ£»
£¨2£©ÎÊmÄÜ·ñµÈÓÚ$\sqrt{3}$£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑ֪ʵÊýx£¬yÂú×㣨x-8£©2+|x-2y+2|=0£¬Çó$\sqrt{2x-\frac{4}{5}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÎÒÃÇÖªµÀ£¬$\sqrt{{a}^{2}}$=|a|£¬ÄÇôҪ»¯¼ò$\sqrt{4+2\sqrt{3}}$±ØÐ뽫±»¿ª·½Êý±äÐÎΪ${£¨\sqrt{a}+\sqrt{b}£©}^{2}$µÄÐÎʽ£¬Èô4+2$\sqrt{3}$=${£¨\sqrt{a}+\sqrt{b}£©}^{2}$£¬Ôò4+2$\sqrt{3}$=a+b+2$\sqrt{ab}$£¬Áî$\left\{\begin{array}{l}{a+b=4}\\{ab=3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=3}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=3}\\{b=1}\end{array}\right.$£¬¹Ê$\sqrt{4+2\sqrt{3}}$=$\sqrt{{£¨\sqrt{3}+1£©}^{2}}$=$\sqrt{3}+1$£®
»¯¼òÏÂÁи÷ʽ£º
£¨1£©$\sqrt{7-2\sqrt{10}}$£»
£¨2£©$\sqrt{8-4\sqrt{3}}$£»
£¨3£©$\sqrt{2-\sqrt{3}}$£»
£¨4£©$\sqrt{5+2\sqrt{6}}$+$\sqrt{5-2\sqrt{6}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖª¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬ACÊÇÖ±¾¶£¬¡ÏA=30¡ã£¬BC=2£¬µãDÊÇABµÄÖе㣬Á¬½ÓDO²¢ÑÓ³¤½»¡ÑOÓÚµãP£¬¹ýµãP×÷PF¡ÍACÓÚµãF£®
£¨1£©ÇóÁÓ»¡PCµÄ³¤£»£¨½á¹û±£Áô¦Ð£©
£¨2£©ÇóÒõÓ°²¿·ÖµÄÃæ»ý£®£¨½á¹û±£Áô¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆË㣺£¨2+1£©£¨22+1£©£¨24+1£©£¨28+1£©£¨216+1£©¡­£¨2256+1£©+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëxÖá½»ÓÚA£¨-3£¬0£©¡¢B£¨1£¬0£©Á½µã£¬ÓëyÖá½»ÓÚµãC£¨0£¬-3m£©£¨ÆäÖÐm£¾0£©£¬¶¥µãΪD£®
£¨1£©Óú¬mµÄ´úÊýʽ·Ö±ð±íʾa¡¢b¡¢c£»
£¨2£©Èçͼ£¬µ±mÈ¡ºÎֵʱ£¬¡÷ADCΪֱ½ÇÈý½ÇÐΣ¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸