精英家教网 > 初中数学 > 题目详情
如图,AB和CD分别是⊙O上的两条弦,圆心O到它们的距离分别是OM和ON,如果AB>CD,OM和ON的大小有什么关系?为什么?
考点:垂径定理,勾股定理
专题:
分析:连接半径,构造直角三角形;利用垂径定理及勾股定理即可解决问题.
解答:解:连接OD、OB;
∵OM⊥AB,ON⊥CD,
BM=
1
2
AB,DN=
1
2
CD

又∵AB>CD,
∴BM>DN;
由勾股定理得:OM=
OB2-BM2
ON=
OD2-DN2
,而OB=OD,
∴OM<ON.
点评:该题考查了垂径定理及勾股定理的应用问题;解题的关键是作辅助线构造直角三角形,灵活运用垂径定理及勾股定理来解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

减去-7m等于4m2-7m-4的代数式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

根据图甲,在图乙的数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,点A所表示的数是(  )
A、-1-
2
B、1-
2
C、
3
-1
D、1-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(2
3
+3)2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,P、Q是△ABC中AB、AC边上的点,你能在BC边上确定一点R,使△PQR的周长最小吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

重庆西永微电园某电子企业新开发生产经营某高端电子产品,由于其设计新颖独特,科技含量高,质量过硬,很受消费者欢迎,市场前景看好.但刚上市不久,就受到大量山寨产品的冲击,1~4月,销量虽一路攀升,但价格却急剧下滑.企业决定从5月起采取措施,逐渐挽回这种不利局面,5~10月,该企业决定每月投入10万元作广告宣传,并积极配合工商部门进行打假活动,从5月起价格呈逐渐上涨趋势.据统计,1~10月该产品的每月售价y(元/台)与月份x(1≤x≤10,且x取整数)之间的函数关系式如下表:
时间x(月)123456710
售价y(元/台)72003600240018002300260029003800
已知该产品的原材料成本为1500元/台,每月需支付工人的工资及其他成本总额为14万元,1到4月的销量P(台)与月份的关系式为P1=200x,5至10月的销量P(台)与月份的关系式为P2=200x+3000.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数知识直接写出y与x的函数关系式,并注明x的取值范围;
(2)设每月利润为w万元,根据以上的信息求出该企业今年1~10月哪个月获得最大利润,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量z的关系为
-x2+10x(0≤x≤5)
25(5<x≤15)
,且用于回顾反思的时间不超过用于解题的时间.
(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;
(2)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=1,PB=3,PC=2,则∠APC等于(  )
A、105°B、120°
C、135°D、150°

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)37.22°=
 
 
 
秒.
(2)25°18′=
 
度.

查看答案和解析>>

同步练习册答案