精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.

(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

【答案】
(1)

证明:∵直角△ABC中,∠C=90°﹣∠A=30°.

∵CD=4t,AE=2t,

又∵在直角△CDF中,∠C=30°,

∴DF= CD=2t,

∴DF=AE


(2)

解:∵DF∥AB,DF=AE,

∴四边形AEFD是平行四边形,

当AD=AE时,四边形AEFD是菱形,

即60﹣4t=2t,

解得:t=10,

即当t=10时,AEFD是菱形


(3)

解:当t= 时△DEF是直角三角形(∠EDF=90°);

当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:

当∠EDF=90°时,DE∥BC.

∴∠ADE=∠C=30°

∴AD=2AE

∵CD=4t,

∴DF=2t=AE,

∴AD=4t,

∴4t+4t=60,

∴t= 时,∠EDF=90°.

当∠DEF=90°时,DE⊥EF,

∵四边形AEFD是平行四边形,

∴AD∥EF,

∴DE⊥AD,

∴△ADE是直角三角形,∠ADE=90°,

∵∠A=60°,

∴∠DEA=30°,

∴AD= AE,

AD=AC﹣CD=60﹣4t,AE=DF= CD=2t,

∴60﹣4t=t,

解得t=12.

综上所述,当t= 时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)


【解析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了了解本校年级学生课外阅读的喜好,随机抽取该校年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:

(1)这次活动一共调查了________名学生;

(2)在扇形统计图中,其他所在扇形圆心角等于__________度;

(3)补全条形统计图;

(4)若该年级有600名学生,请你估计该年级喜欢科普常识的学生人数约是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有200个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作2小时后,乙才开始工作,因此比甲迟20分钟完成任务.已知乙每小时加工零件的个数是甲的2倍,问甲、乙两车间每小时各加工多少零件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简与求值:

)已知当时,代数式值为,求代数式的值.

)已知,代数式的值.

)若多项式是关于 的四次二项式,求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于A(﹣3,1)、B(m,3)两点,
(1)求反比例函数和一次函数的解析式;
(2)写出使一次函数的值大于反比例函数的x的取值范围;
(3)连接AO、BO,求△ABO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,后求值:a+5a3b)﹣2a2b),其中a2b=﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1 , B2 , B3 , …,则B2015的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:2x2-5x+4-2x2-6x),其中x=-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列事件中,随机事件是(  )

A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯

C.在只装了红球的袋子中摸到白球D.太阳从东方升起

查看答案和解析>>

同步练习册答案