精英家教网 > 初中数学 > 题目详情
2.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.
求:DP的长及点D的坐标.

分析 根据等边三角形的每一个角都是60°可得∠OAB=60°,然后根据对应边的夹角∠OAB为旋转角求出∠PAD=60°,再判断出△APD是等边三角形,根据等边三角形的三条边都相等可得DP=AP,根据,∠OAB的平分线交x轴于点P,∠OAP=30°,利用三角函数求出AP,从而得到DP,再求出∠OAD=90°,然后写出点D的坐标即可.

解答 解:∵△AOB是等边三角形,
∴∠OAB=60°,
∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,
∴旋转角=∠OAB=∠PAD=60°,AD=AP,
∴△APD是等边三角形,
∴DP=AP,∠PAD=60°,
∵A的坐标是(0,3),∠OAB的平分线交x轴于点P,
∴∠OAP=30°,AP=$\sqrt{{(\sqrt{3})}^{2}+{3}^{2}}$=2$\sqrt{3}$,
∴DP=AP=2$\sqrt{3}$,
∵∠OAP=30°,∠PAD=60°,
∴∠OAD=30°+60°=90°,
∴点D的坐标为(2$\sqrt{3}$,3).

点评 本题考查了旋转的性质,坐标与图形性质,等边三角形的判定与性质,解直角三角形,熟记各性质并判断出△APD是等边三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,在矩形ABCD中,对角线AC和BD相交于点O,点E、F分别是DO、AO的中点.若AB=8cm,BC=4cm,则△OEF的周长为(2$\sqrt{5}$+2)cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知a,b,c均为有理数,若a>b,且b≠0,则下列结论不一定成立的是(  )
A.a2>abB.a+c>b+cC.$\frac{a}{c^2}>\frac{b}{c^2}$D.c-a<c-b

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.一列数x1,x2,x3,…,其中x1=$\frac{1}{2}$,xn=$\frac{1}{1-{x}_{n-1}}$(n为不小于2的整数),则x2015=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.
(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?
(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列计算正确的是(  )
A.a2•a3=a6B.(x+y)2=x2+y2C.(a3b)2=a6b2D.a2÷a3=a(a≠0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.
(1)求证:△ABF是等腰三角形;
(2)如图2,BF的延长交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如右图所示,点Q表示蜜蜂,它从点P出发,按照着箭头所示的方向沿P→A→B→P→C→D→P的路径匀速飞行,此飞行路径是一个以直线l为对称轴的轴对称图形,在直线l上的点O处(点O与点P不重合)利用仪器测量了∠POQ的大小.设蜜蜂飞行时间为x,∠POQ的大小为y,则下列图象中,能表示y与x的函数关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知$\frac{1}{a}$-$\frac{1}{b}$=4,则$\frac{a-2ab-b}{2a+7ab-2b}$的值等于(  )
A.6B.-6C.$\frac{2}{15}$D.-$\frac{2}{7}$

查看答案和解析>>

同步练习册答案