精英家教网 > 初中数学 > 题目详情

若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=________.

9
分析:首先,由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=-时,y=0.且b2-4c=0,即b2=4c;
其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,则A(--3,n),B(-+3,n);
最后,根据二次函数图象上点的坐标特征知n=(--3)2+b(--3)+c=b2+c+9,所以把b2=4c代入即可求得n的值.
解答:∵抛物线y=x2+bx+c与x轴只有一个交点,
∴当x=-时,y=0.且b2-4c=0,即b2=4c.
又∵点A(m,n),B(m+6,n),
∴点A、B关于直线x=-对称,
∴A(--3,n),B(-+3,n)
将A点坐标代入抛物线解析式,得:n=(--3)2+b(--3)+c=b2+c+9
∵b2=4c,
∴n=×4c+c+9=9.
故答案是:9.
点评:本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2-4ac决定抛物线与x轴的交点个数.
△=b2-4ac>0时,抛物线与x轴有2个交点;
△=b2-4ac=0时,抛物线与x轴有1个交点;
△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若抛物线y=x2-x-k与x轴的两个交点都在x轴正半轴上,则k的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

10、若抛物线y=x2-2mx+m2+m+1的顶点在第二象限,则常数m的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=x2-
k-1
x-1
与x轴有交点,则k的取值范围是(  )
A、k>-3B、k≥-3
C、k≥1D、-3≤k≤1

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=x2+mx-2m2经过坐标原点,则这个抛物线的顶点坐标是
(0,0)
(0,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=x2-kx+k-1的顶点在坐标轴上,则k=
2或0
2或0

查看答案和解析>>

同步练习册答案