精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一个条件,某学习小组在讨论这个条件时给出了如下几种方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有(

A.1种
B.2种
C.3种
D.4种

【答案】D
【解析】解:∵在△ABC中,AB=AC, ∴∠B=∠C,
当①AD=AE时,
∴∠ADE=∠AED,
∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,
∴∠BAD=∠CAE,
然后根据SAS或ASA或AAS可判定△ABD≌△ACE;
当②BD=CE时,根据SAS可判定△ABD≌△ACE;
当③BE=CD时,
∴BE﹣DE=CD﹣DE,
即BD=CE,根据SAS可判定△ABD≌△ACE;
当④∠BAD=∠CAE时,根据ASA可判定△ABD≌△ACE.
综上所述①②③④均可判定△ABD≌△ACE.
故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4

(1)求经过A、B、C三点的抛物线的解析式;

(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,∠A=80°,∠B和∠C的平分线相交于点O
(1)连接OA,求∠OAC的度数;
(2)求:∠BOC。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.

(1)求抛物线的解析式;

(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FMx轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,过点E作EHED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABD和等边三角形CBD的边长均为a,现把它们拼合起来,E是AD上异于A、D两点的一动点,F是CD上一动点,满足AE+CF=a.则△BEF的形状如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.

(1)从运动开始,当t取何值时,PQ∥CD?

(2)从运动开始,当t取何值时,△PQC为直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:不论k为何值时,关于x的一元二次方程x2+k2x+k4)=0有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的(  )
A.平均数
B.中位数
C.方差
D.众数

查看答案和解析>>

同步练习册答案