精英家教网 > 初中数学 > 题目详情

【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.

【答案】
(1)

解:由题意可得:tan50°= ≈1.2,

解得:AC=24,

∵∠BDC=45°,

∴DC=BC=20m,

∴AB=AC﹣BC=24﹣20=4(m),

答:建筑物BC的高度为4m;


(2)

解:设DC=BC=xm,

根据题意可得:tan50°= = ≈1.2,

解得:x=25,

答:建筑物BC的高度为25m


【解析】(1)直接利用tan50°= ,进而得出AC的长,求出AB的长即可;(2)直接利用tan50°= ,进而得出BC的长求出答案.此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.
【考点精析】掌握关于仰角俯角问题是解答本题的根本,需要知道仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn= (n2﹣an+b)(其中a,b是常数,n≥4)
(1)通过画图,可得:四边形时,P4= ;五边形时,P5=
(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:

(1)随机选择一天,恰好天气预报是晴;
(2)随机选择连续的两天,恰好天气预报都是晴.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.
简单应用:

(1)在图①中,若AC= ,BC=2 ,则CD=
(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是(  )
A.相交
B.相切
C.相离
D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= BC.图中相似三角形共有(
A.1对
B.2对
C.3对
D.4对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数 的图象相交于B(﹣1,5)、C( ,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点.

(1)求k、b的值;
(2)设﹣1<m< ,过点P作x轴的平行线与函数 的图象相交于点D.试问△PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;
(3)设m=1﹣a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案