精英家教网 > 初中数学 > 题目详情
9.我们来定义一种运算:
$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,例如$|\begin{array}{l}{2}&{3}\\{4}&{5}\end{array}|$=2×5-3×4=-2,按照这种定义,当$|\begin{array}{l}{2}&{\frac{x}{2}-1}\\{2}&{x}\end{array}|$=$|\begin{array}{l}{-4}&{x-1}\\{1}&{\frac{1}{2}}\end{array}|$成立时,求x的值.

分析 已知等式利用新定义化简,即可求出x的值.

解答 解:根据题中新定义化简得:2x-x+2=-2-x+1,
移项合并得:2x=-3,
解得:x=-1.5.

点评 此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.比较大小:1-$\sqrt{2}$> 1-$\sqrt{3}$ ( 填>或<)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y…①,
那么原方程可化为y2-5y+4=0,解得y1=1,y2=4
当y=1时,x2-1=1,∴x2=2,∴x=±$\sqrt{2}$
当y=4时,x2-1=4,∴x2=5,∴x=±$\sqrt{5}$
故原方程的解为x1=$\sqrt{2}$,x2=-$\sqrt{2}$,x3=$\sqrt{5}$,x4=-$\sqrt{5}$
上述解题过程中,将原方程中某个多项式视为整体,并用另一个未知数替换这个整体,从而把高次方程化为低次方程,实现降次的目的,这种解方程的方法称为“换元法”
解答问题:请用换元法解方程x2-2x+$\frac{21}{{x}^{2}-2x}$=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)(3$\sqrt{2}$+2$\sqrt{3}$)(2$\sqrt{3}$-3$\sqrt{2}$);
(2)($\sqrt{98}$-2$\sqrt{75}$)-($\sqrt{27}$-$\sqrt{128}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.甲、乙两地相距150千米,某人骑车从甲地到乙地需a小时,现需提前1小时到达,则骑车的速度每小时应为$\frac{150}{a-1}$千米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,抛物线y=$\frac{1}{4}$x2+bx+c与x轴交于点A(-2,0),交y轴于点B(0,-$\frac{5}{2}$),直线y=kx+$\frac{3}{2}$过点A与y轴交于点C,与抛物线的另一交点是D
(1)求抛物线y=$\frac{1}{4}$x2+bx+c与直线y=kx+$\frac{3}{2}$的解析式;
(2)①点P是抛物线上A、D间的一个动点,过P点作PM∥y轴交线段AD于M点,过D点作DE⊥y轴于点E,问是否存在P点使得四边形PMEC为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由
②作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为t,求m与t的函数关系式,并求出m的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若一元二次方程x2=a的两个根分别是m+1与2m-4,则a=4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,AC是⊙O的直径,AB是⊙O的弦,点E是弧AB的中点,连结OE,交AB于点D,再连结CD,若tan∠CDB=$\frac{3}{2}$,则AB与DE的数量关系是(  )
A.AB=2DEB.AB=3DEC.AB=4DED.2AB=3DE

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.大连与哈尔滨两地相距约900千米,2012年末高铁开通后,平均速度变成原来特快火车平均速度的2.5倍,用时缩短了4.5小时,原来特快火车平均速度是多少?

查看答案和解析>>

同步练习册答案