14£®Èçͼ£¬Å×ÎïÏßy=$\frac{1}{4}$x2+bx+cÓëxÖá½»ÓÚµãA£¨-2£¬0£©£¬½»yÖáÓÚµãB£¨0£¬-$\frac{5}{2}$£©£¬Ö±Ïßy=kx+$\frac{3}{2}$¹ýµãAÓëyÖá½»ÓÚµãC£¬ÓëÅ×ÎïÏßµÄÁíÒ»½»µãÊÇD
£¨1£©ÇóÅ×ÎïÏßy=$\frac{1}{4}$x2+bx+cÓëÖ±Ïßy=kx+$\frac{3}{2}$µÄ½âÎöʽ£»
£¨2£©¢ÙµãPÊÇÅ×ÎïÏßÉÏA¡¢D¼äµÄÒ»¸ö¶¯µã£¬¹ýPµã×÷PM¡ÎyÖá½»Ïß¶ÎADÓÚMµã£¬¹ýDµã×÷DE¡ÍyÖáÓÚµãE£¬ÎÊÊÇ·ñ´æÔÚPµãʹµÃËıßÐÎPMECΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ
¢Ú×÷PN¡ÍADÓÚµãN£¬Éè¡÷PMNµÄÖܳ¤Îªm£¬µãPµÄºá×ø±êΪt£¬ÇómÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³ömµÄ×î´óÖµ£®

·ÖÎö £¨1£©°ÑA¡¢BÁ½µãµÄ×ø±ê´úÈëy=$\frac{1}{4}$x2+bx+c¿ÉÇó³öb¡¢c£¬´Ó¶øµÃµ½Å×ÎïÏß½âÎöʽ£»°ÑAµã×ø±ê´úÈëy=kx+$\frac{3}{2}$¿ÉÇó³ökµÄÖµ£¬´Ó¶øµÃµ½Ò»´Îº¯Êý½âÎöʽ£»
£¨2£©ÏȽⷽ³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}-\frac{3}{4}x-\frac{5}{2}}\\{y=\frac{3}{4}x+\frac{3}{2}}\end{array}\right.$µÃD£¨8£¬$\frac{15}{2}$£©£¬ÔÙÈ·¶¨C£¨0£¬$\frac{3}{2}$£©£¬ÔòCE=6£¬É裨x£¬$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©£¬ÔòM£¨x£¬$\frac{3}{4}x$+$\frac{3}{2}$£©£¬Ôò¿É±íʾ³öMN=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬ÀûÓÃÆ½ÐÐËıßÐεÄÅж¨·½·¨£¬µ±PM=CEʱ£¬ËıßÐÎPMECΪƽÐÐËıßÐΣ¬¼´-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=6£¬È»ºó½â·½³Ì¼´¿ÉµÃµ½Pµã×ø±ê£»
£¨3£©ÏÈÀûÓù´¹É¶¨Àí¼ÆËã³öCD=10£¬É裨t£¬$\frac{1}{4}$t2-$\frac{3}{4}$t-$\frac{5}{2}$£©£¬ÔòM£¨t£¬$\frac{3}{4}$t+$\frac{3}{2}$£©£¬Ôò±íʾ³öMN=-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£¬ÔÙÖ¤Ã÷Rt¡÷PMN¡×Rt¡÷DCE£¬ÀûÓÃÏàËÆ±È¿ÉµÃµ½MN=$\frac{3}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬PN=$\frac{4}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬
ËùÒÔm=$\frac{12}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó½â£®

½â´ð ½â£º£¨1£©°ÑA£¨-2£¬0£©£¬B£¨0£¬-$\frac{5}{2}$£©´úÈëy=$\frac{1}{4}$x2+bx+cµÃ$\left\{\begin{array}{l}{1-2b+c=0}\\{c=-\frac{5}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=-\frac{3}{4}}\\{c=-\frac{5}{2}}\end{array}\right.$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£»
°ÑA£¨-2£¬0£©´úÈëy=kx+$\frac{3}{2}$µÃ-2k+$\frac{3}{2}$=0£¬½âµÃk=$\frac{3}{4}$£¬
ËùÒÔÒ»´Îº¯Êý½âÎöʽΪy=$\frac{3}{4}$x+$\frac{3}{2}$£»
£¨2£©´æÔÚ£®
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}-\frac{3}{4}x-\frac{5}{2}}\\{y=\frac{3}{4}x+\frac{3}{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=\frac{15}{2}}\end{array}\right.$£¬ÔòD£¨8£¬$\frac{15}{2}$£©£¬
µ±x=0ʱ£¬y=$\frac{3}{4}$x+$\frac{3}{2}$=+$\frac{3}{2}$£¬ÔòC£¨0£¬$\frac{3}{2}$£©£¬
¡ßDE¡ÍyÖᣬ
¡àE£¨0£¬$\frac{15}{2}$£©£¬
¡àCE=OE-OC=6£¬
É裨x£¬$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©£¬ÔòM£¨x£¬$\frac{3}{4}x$+$\frac{3}{2}$£©£¬
¡àMN=$\frac{3}{4}x$+$\frac{3}{2}$-£¨$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬
¡ßCE¡ÎPM£¬
¡àµ±PM=CEʱ£¬ËıßÐÎPMECΪƽÐÐËıßÐΣ¬
¼´-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=6£¬½âµÃx1=2£¬x2=4£¬
¡à´ËʱPµã×ø±êΪ£¨2£¬-3£©£¬£¨4£¬-$\frac{3}{2}$£©£»
£¨3£©ÔÚRt¡÷CDEÖУ¬¡ßCE=6£¬DE=8£¬
¡àCD=10£¬
É裨t£¬$\frac{1}{4}$t2-$\frac{3}{4}$t-$\frac{5}{2}$£©£¬ÔòM£¨t£¬$\frac{3}{4}$t+$\frac{3}{2}$£©£¬
¡àMN=$\frac{3}{4}$t+$\frac{3}{2}$-£¨$\frac{1}{4}$t2-$\frac{3}{4}$t-$\frac{5}{2}$£©=-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£¬
¡ßPM¡ÎCE£¬
¡à¡ÏECD=¡ÏPMN£¬
¡àRt¡÷PMN¡×Rt¡÷DCE£¬
¡à$\frac{PM}{CD}$=$\frac{MN}{CE}$=$\frac{PN}{DE}$£¬
¡àMN=$\frac{3}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬PN=$\frac{4}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬
¡àm=PM+MN+PN=$\frac{12}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©=-$\frac{3}{5}$£¨t-3£©2+15£¬
µ±t=3ʱ£¬mÓÐ×î´óÖµ£¬×î´óֵΪ15£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖÊºÍÆ½ÐÐËıßÐεÄÅж¨£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»»áÀûÓù´¹É¶¨ÀíºÍÏàËÆ±È¼ÆËãÏ߶εij¤£»Àí½â×ø±êÓëͼÐεÄÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¹Û²ì·ÖÎöÏÂÁÐÊý¾Ý£¬Ñ°ÕÒ¹æÂÉ£º0£¬$\sqrt{3}$£¬$\sqrt{6}$£¬3£¬2$\sqrt{3}$£¬$\sqrt{15}$£¬3$\sqrt{2}$£¬¡­ÄÇôµÚ10¸öÊý¾ÝÓ¦ÊÇ3$\sqrt{3}$£®µÚn¸öÊýÊÇ$\sqrt{3£¨n-1£©}$£¨nΪÕýÕûÊý£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬PΪÕý·½ÐÎABCD±ßBCÉÏÈÎÒ»µã£¬BG¡ÍAPÓÚµãG£¬ÔÚµãAPÑÓ³¤ÏßÉÏÈ¡µãE£®Ê¹AG=GE£®Á¬½ÓBE¡¢CE£®
£¨1£©ÇóÖ¤£ºBE=BC£»
£¨2£©¡ÏCBEƽ·ÖÏßAEÓÚNµã£®Çó¡ÏANBµÄ¶ÈÊý£»
£¨3£©Á¬½ÓDN£¬ÇóÖ¤£ºBN+DN=$\sqrt{2}$AN£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆË㣺
£¨1£©$\sqrt{30}$¡Â3$\sqrt{\frac{8}{5}}$¡Á$\frac{2}{3}$$\sqrt{\frac{20}{3}}$£»
£¨2£©$\sqrt{12}$-$\sqrt{18}$-$\sqrt{0.5}$+$\sqrt{\frac{1}{3}}$£»
£¨3£©$\sqrt{50}$¡Á£¨$\sqrt{2}$$-3\sqrt{\frac{1}{2}}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÎÒÃÇÀ´¶¨ÒåÒ»ÖÖÔËË㣺
$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc£¬ÀýÈç$|\begin{array}{l}{2}&{3}\\{4}&{5}\end{array}|$=2¡Á5-3¡Á4=-2£¬°´ÕÕÕâÖÖ¶¨Ò壬µ±$|\begin{array}{l}{2}&{\frac{x}{2}-1}\\{2}&{x}\end{array}|$=$|\begin{array}{l}{-4}&{x-1}\\{1}&{\frac{1}{2}}\end{array}|$³ÉÁ¢Ê±£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¼ÆË㣺£¨-1£©2017+2017-1=-$\frac{2016}{2017}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£®
[£¨a+b£©2+£¨b+a£©£¨a-b£©]¡Â£¨2a£©£¬ÆäÖÐa=2£¬b=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ö¸³öÏÂÁÐÎÊÌâÖеıäÁ¿ºÍ³£Á¿£º
ijÊеÄ×ÔÀ´Ë®¼ÛΪ4Ôª/t£¬ÏÖÒª³éÈ¡Èô¸É»§¾ÓÃñµ÷²éË®·ÑÖ§³öÇé¿ö£¬¼Çij»§ÔÂÓÃË®Á¿Îªx t£¬ÔÂÓ¦½»Ë®·ÑΪyÔª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª·ÇÁãʵÊýx£¬y£¬z£¬Âú×ã|2x-6|+|y+1|+$\sqrt{£¨x-4£©{y}^{2}}$+x2+z2=2+2xz£¬Çóx+y-zµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸