已知直线与x轴、y轴分别交于B点、A点,直线与x轴、y轴分别交于D点、E点,两条直线交于点C,求⊿BCD的外接圆直径的长度。
1.
解析试题分析:先根据题意求出各点坐标,然后根据三形角各边之间的关系,推算出∠DCB=90°,确定BD是△BCD的外接圆直径,利用各点的坐标特征求出直径的长度.
试题解析:∵直线y=?x+1与x轴、y轴分别交于B点、A点,
∴当y=0时,x=2,即与x轴的交点B是(2,0);
当x=0时,y=1,即与x轴的交点A是(0,1);
又∵直线y=2x-2与x轴、y轴分别交于D点、E点,
∴当y=0时,x=1,即与x轴的交点D是(1,0);
当x=0时,y=-2,即与x轴的交点E是(0,-2);
∴OA=OD=1,OB=OE=2;
∵∠AOB=∠DOE;
∴△AOB≌△DOE;
∵∠ABO=∠OED;
∵∠ODE=∠COB;
∴∠EOD=∠DCB=90°;
∴BD是△BCD的外接圆直径;
∴BD=OB-OD=2-1=1.
考点:一次函数综合题.
科目:初中数学 来源: 题型:解答题
下表中,y是x的一次函数.
x | 2 | 1 | 2 | | 5 |
y | 6 | 3 | | 12 | 15 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知反比例函数()与一次函数 ()相交于A、B两点,AC⊥轴于点C.若△OAC的面积为1,且tan∠AOC=2.
(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当为何值时,反比例函数的值大于一次函数的值?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)、甲、乙两人的速度各是多少?
(2)、求甲距A地的路程S与行驶时间t的函数关系式。
(3)、直接写出在什么时间段内乙比甲距离A 地更近?(用不等式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上.
(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;
(2)若直线MN上存在点P,使得PA+PB的值最小,请直接写出PA的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;
(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
书生中学小卖部工作人员到路桥批发部选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量(个)与甲品牌文具盒数量(个)之间的函数关系如图所示,当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7 200元.
(1)根据图象,求与之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货价;
(3)若小卖部每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学校后勤部决定,准备用不超过6 300元购进甲、乙两种品牌的文具盒,且这两种文具盒全部售出后获利不低于1 795元,问小卖部工作人员有几种进货方案?哪种进货方案能使获利最大?最大获利为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com