精英家教网 > 初中数学 > 题目详情
7.如图(1),四边形ABCD是平行四边形,BD是它的一条对角线,过顶点A、C分别作AM⊥BD,CN⊥BD,M,N为垂足.
(1)求证:AM=CN;
(2)如图(2),在对角线DB的延长线及反向延长线上分别取点E,F,使BE=DF,连接AE、CF,试探究:当EF满足什么条件时,四边形AECF是矩形?并加以证明.

分析 (1)利用平行四边形的性质证得△AMD≌△CNB,从而根据全等三角形对应边相等证得结论即可;
(2)利用对角线相等的平行四边形是矩形证得结论即可.

解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠ADM=∠CBN.
∵AM⊥BD,CN⊥BD,
∴∠AMD=∠CNB=90°,
在△AMD和△CNB中$\left\{\begin{array}{l}{∠ADM=∠CEN}\\{∠AMD=∠CNB}\\{AD=BC}\end{array}\right.$,
∴△AMD≌△CNB.     
∴AM=CN.             

(2)猜想:当EF=AC时,四边形AECF是矩形.
证明:由(1)得△AMD≌△CNB,
∴DM=BN.
∵BE=DF,
∴DM+DF=BN+BE,即MF=NE.                 
在△AMF和△CNE中$\left\{\begin{array}{l}{MF=NE}\\{∠AMF=∠CNE}\\{AM=CN}\end{array}\right.$  
∴△AMF≌△CNE.
∴AF=CE,∠AFE=∠CEF.   
∴AF∥CE且AF=CE.
即四边形AECF是平行四边形.
又EF=AC,
∴四边形AMCN是矩形.

点评 本题考查了平行四边形对边平行且相等的性质,平行线的性质,全等三角形的判定与性质,是基础题,一般情况下,证明边相等,就利用边所在的三角形全等证明.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.(1)2sin30°+$\sqrt{3}$tan60°-$\sqrt{2}$cos45°
(2)若$\frac{x}{y}$=$\frac{1}{3}$,求$\frac{2x+y}{x-y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)$\frac{x}{x-2}$-1=$\frac{8}{{x}^{2}-4}$
(2)2x2+3=7x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.
(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的项点上:
(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的项点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的面积为7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=$\frac{k}{x}$(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形Bn-1An-2An-1Pn时,落在反比例函数图象上的顶点Pn的坐标是Pn(2n-1,$\frac{1}{{2}^{n-1}}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.有序实数对与平面直角坐标系内点的对应关系
我们知道,任何一个有序数对(a,b),在平面直角坐标系中都可以用唯一的一个点表示.请画出一个平面直角坐标系,并标出点($\sqrt{3},0$),(0,-$\sqrt{5}$),($\sqrt{3}$,-$\sqrt{5}$)在平面直角坐标系中的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的⊙O上吗?
我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在⊙O外,要么在⊙O内,以下该同学的想法说明了点D不在⊙O外.请结合图④证明点D也不在⊙O内.
【证】
[结论]综上可得结论,如果∠ACB=∠ADB=α(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:A、B、C、D四点共圆.
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转α度(α为锐角)得△ADE,连接BE、CD,延长CD交BE于点F;
(1)用含α的代数式表示∠ACD的度数;
(2)求证:点B、C、A、F四点共圆;
(3)求证:点F为BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.近几年来全国各省市市政府民生实事之一的公共自行车建设工作已基本完成,网上资料显示呼和浩特市某部门对14年4月份中的7天进行了公共自行车日租车辆的统计,结果如图:

(1)求这7天日租车量的众数、中位数和平均数;
(2)用(1)中的平均数估计4月份(30天)该市共租车多少万车次;
(3)资料显示,呼市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年该市租车费收入占总投入的百分率(精确到0.1%).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)试说明△PCM≌△QDM.
(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.

查看答案和解析>>

同步练习册答案