精英家教网 > 初中数学 > 题目详情
2.如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=$\frac{k}{x}$(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形Bn-1An-2An-1Pn时,落在反比例函数图象上的顶点Pn的坐标是Pn(2n-1,$\frac{1}{{2}^{n-1}}$).

分析 先根据题意得出P1点的坐标,进而可得出反比例函数的解析式,再依次求出点P2,P3的坐标,找出规律即可得出结论.

解答 解:∵正方形OAP1B的边长为1,点P1在反比例函数y=$\frac{k}{x}$(x>0)的图象上,
∴P1(1,1),
∴k=1,
∴在反比例函数的解析式为:y=$\frac{1}{x}$,
∵B1是P1A的中点,
∴P2A1=AB1=$\frac{1}{2}$,
∴OA1=2,
∴P2(2,$\frac{1}{2}$),
同理,P3(22,$\frac{1}{{2}^{2}}$),

∴Pn(2n-1,$\frac{1}{{2}^{n-1}}$).
故答案为:(2n-1,$\frac{1}{{2}^{n-1}}$).

点评 本题考查了反比例函数图象上点的坐标特征,矩形的性质,找出规律是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,直线y=x-2与反比例函数y=$\frac{k}{x}$的图象交于点A(3,1)和点B.
(1)求k的值及点B的坐标;
(2)若点P是坐标平面内一点,且以A,O,B,P为顶点构成一个平行四边形,请你直接写出该平行四边形对角线交点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:4sin60°-|3-$\sqrt{12}$|+( $\frac{1}{2}$)-2
(2)解方程:x2-$\sqrt{3}$x-$\frac{1}{4}$=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=$\frac{1}{2}$GF×AF;④当AG=6,EG=2$\sqrt{5}$时,BE的长为$\frac{12}{5}$$\sqrt{5}$,其中正确的结论个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图(1),四边形ABCD是平行四边形,BD是它的一条对角线,过顶点A、C分别作AM⊥BD,CN⊥BD,M,N为垂足.
(1)求证:AM=CN;
(2)如图(2),在对角线DB的延长线及反向延长线上分别取点E,F,使BE=DF,连接AE、CF,试探究:当EF满足什么条件时,四边形AECF是矩形?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,表示甲骑电动车与乙驾驶汽车匀速行驶120km的过程中行驶的路程y与经过的时间x之间的函数图象,请根据图象解答下列问题:
(1)分别写出甲、乙行驶的路程ykm与x(h)之间的函数关系式;
(2)何时甲在乙的前面,何时乙在甲的前面?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简代数式:($\frac{x}{{x}^{2}+x}$-1)÷$\frac{{x}^{2}-1}{{x}^{2}+2x+1}$,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,放在平面直角坐标系中的圆O的半径为3,现做如下实验:抛掷一枚均匀的正四面体骰子,它有四个顶点,各顶点数分别是1,2,3,4,每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)若第一次骰子朝上的点数为1,第二次骰子朝上的点数为2,此时点P是(填“是”或“否”)落在圆O内部;
(2)请你用树状图或列表的方法表示出P点坐标的所有可能结果;
(1)求点P落在圆O面上(含内部与边界)的概率.

查看答案和解析>>

同步练习册答案