精英家教网 > 初中数学 > 题目详情
11.先化简代数式:($\frac{x}{{x}^{2}+x}$-1)÷$\frac{{x}^{2}-1}{{x}^{2}+2x+1}$,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.

分析 根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入即可解答本题.

解答 解:($\frac{x}{{x}^{2}+x}$-1)÷$\frac{{x}^{2}-1}{{x}^{2}+2x+1}$
=$\frac{x-{x}^{2}-x}{x(x+1)}×\frac{(x+1)^{2}}{(x+1)(x-1)}$
=$\frac{-{x}^{2}}{x(x+1)}×\frac{(x+1)^{2}}{(x+1)(x-1)}$
=$\frac{x}{1-x}$,
当x=2时,原式=$\frac{2}{1-2}=-2$.

点评 本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法,注意x的值不等取0,1,-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(-1,0)、B(4,0)
(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(-$\frac{7}{6}$,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=$\frac{k}{x}$(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形Bn-1An-2An-1Pn时,落在反比例函数图象上的顶点Pn的坐标是Pn(2n-1,$\frac{1}{{2}^{n-1}}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的⊙O上吗?
我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在⊙O外,要么在⊙O内,以下该同学的想法说明了点D不在⊙O外.请结合图④证明点D也不在⊙O内.
【证】
[结论]综上可得结论,如果∠ACB=∠ADB=α(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:A、B、C、D四点共圆.
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转α度(α为锐角)得△ADE,连接BE、CD,延长CD交BE于点F;
(1)用含α的代数式表示∠ACD的度数;
(2)求证:点B、C、A、F四点共圆;
(3)求证:点F为BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知二次函数y=-x2-x+2的图象和x 轴交于点A,B,与y轴交于点C,直线OE过点Q($-\frac{1}{2}$,$-\frac{1}{4}$)且与抛物线交于点E,直线OE上方的抛物线上一动点P.
(1)求直线OE的解析式;
(2)求△POQ面积的最大值;
(3)如图2,当△POQ面积最大时,在直线OE上有一动点K,连接PK,求PK+$\frac{\sqrt{5}}{5}$EK的最小值及此时点K的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.近几年来全国各省市市政府民生实事之一的公共自行车建设工作已基本完成,网上资料显示呼和浩特市某部门对14年4月份中的7天进行了公共自行车日租车辆的统计,结果如图:

(1)求这7天日租车量的众数、中位数和平均数;
(2)用(1)中的平均数估计4月份(30天)该市共租车多少万车次;
(3)资料显示,呼市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年该市租车费收入占总投入的百分率(精确到0.1%).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,-1).
(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的位似比为1:2,画出△A1B2C2(△ABC与△A1B2C2在位似中心O点的两侧,A,B,C的对应点分别是A1,B2,C2).
(2)利用方格纸标出△A1B2C2外接圆的圆心P,P点坐标是(3,1),⊙P的半径=$\sqrt{10}$.(保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.
(1)直线的表达式为y=$\frac{1}{3}$x+1;抛物线的表达式为y=-$\frac{1}{3}$x2-$\frac{2}{3}$x+1.
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,AB为⊙O直径,点C,D为⊙O上两点,若∠C+∠AOD=145°,则∠C的大小是(  )
A.30°B.35°C.40°D.45°

查看答案和解析>>

同步练习册答案