精英家教网 > 初中数学 > 题目详情
13.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.

分析 (1)由方程的系数结合根的判别式即可得出△=9+4k>0,解之即可得出结论;
(2)由根与系数的关系结合方程两根同号即可得出k=-2或-1,取k=-2,利用分解因式法解一元二次方程即可得出结论.

解答 解:(1)∵方程x2-3x-k=0有两个不相等的实数根,
∴△=(-3)2+4k=9+4k>0,
解得:k>-$\frac{9}{4}$.
(2)∵方程的两根同号,
∴-k>0,
∴k=-2或-1.
当k=-2时,原方程为x2-3x+2=(x-1)(x-2)=0,
解得:x1=1,x2=2.

点评 本题考查了根的判别式、根与系数的关系以及因式分解法解一元二次方程,解题的关键是:(1)利用根的判别式找出△=9+4k>0;(2)根据两根同号找出k=-2或-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.-(-5)=5,-|-3|=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在长方形纸片ABCD中,AB=15cm,AD=10cm.将纸片沿EF折叠,EF∥AD,设AE=x(cm),折叠后重叠部分的面积为S(cm2).
填写下列表格:
 x/cm 1 3 5 7 9 11 13
 S/cm2103050 70 60 40 20 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(-1,0)、B(4,0)
(1)求此二次函数的表达式
(2)如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(-$\frac{7}{6}$,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标
(3)如图2,点M在抛物线上,且点M的横坐标是1,点P为抛物线上一动点,若∠PMA=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2,求$\frac{BE}{AD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)$\frac{x}{x-2}$-1=$\frac{8}{{x}^{2}-4}$
(2)2x2+3=7x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,在平面直角坐标系xOy中,反比例函数y=$\frac{8}{x}$的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0).
(1)求平移后直线的表达式;
(2)求OA平移后所得直线与双曲线的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y=$\frac{k}{x}$(x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形Bn-1An-2An-1Pn时,落在反比例函数图象上的顶点Pn的坐标是Pn(2n-1,$\frac{1}{{2}^{n-1}}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,-1).
(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的位似比为1:2,画出△A1B2C2(△ABC与△A1B2C2在位似中心O点的两侧,A,B,C的对应点分别是A1,B2,C2).
(2)利用方格纸标出△A1B2C2外接圆的圆心P,P点坐标是(3,1),⊙P的半径=$\sqrt{10}$.(保留根号)

查看答案和解析>>

同步练习册答案