精英家教网 > 初中数学 > 题目详情

已知抛物线y=x2+ax+a-2.
(1)证明:此抛物线与x轴总有两个不同的交点;
(2)求这两个交点间的距离(用关于a的表达式来表达);
(3)a取何值时,两点间的距离最小?

解:(1)证明:∵y=x2+ax+a-2,
∵△=a2-4(a-2)=a2-4a+8=a2-4a+4+4=(a-2)2+4,
又∵(a-2)2+4>0,
∴△>0,
∴此抛物线与x轴总有两个不同的交点.

(2)解:设二次函数y=x2+ax+a-2与x轴的两交点的横坐标为x1,x2
则方程x2+ax+a-2=0的两个根为x1,x2
得x1+x2=-a,x1x2=a-2,


(3)由(2)知当a=2时,两点间的距离最小为2.
分析:(1)令y=0,根据方程根的判别式△与0的关系来证明;
(2)设出方程x2+ax+a-2=0,两根为x1,x2,根据两根与函数系数之间的关系,用其表示出两根间的距离;
(3)根据(2)的表达式,对两根间距离的表达式进行配方,从而求出最小值;
点评:此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根,此题主要考查方程的根与函数系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案