精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,RtPBD的斜边PB落在y轴上,tanBPD=.延长BD交x轴于点C,过点D作DAx轴,垂足为A,OA=4,OB=3.

(1)求点C的坐标;

(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.

 

 

【解析】

试题分析:(1)根据∠DMA人正切值,可得PD的斜率,由PD与BC垂直,可得BD的斜率,从而可求出直线BC的解析式,根据函数值为0,可得C点坐标;

(2)由OA=4,可知D点横坐标,由于点D在直线BC上,从而可得D坐标,再由待定系数法,可得反比例函数解析式.

试题解析:(1)Rt△PBD的斜边PB落在y轴上,

∴BD⊥PB,

kPD=tan∠DMA=tan∠OMP===2,

kBD•kPD=﹣1,

kBD=﹣

直线BD的解析式是y=﹣x+3,

当y=0时,﹣x+3=0,

x=6,

C点坐标是(6,0);

(2)当x=4时,y=﹣×4+3=1,

∴D(4,1).

点D在反比例函数y=(k>0)的图象上,

∴k=4×1=4,

∴反比例函数的解析式为 y=

考点:1、直线斜率;2、反比例函数;3、一次函数 

 

练习册系列答案
相关习题

科目:初中数学 来源:2014年初中毕业升学考试(浙江温州卷)数学(解析版) 题型:计算题

计算:

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:解答题

用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面。

现有19张硬纸板,裁剪时张用A方法,其余用B方法。

1)用的代数式分别表示裁剪出的侧面和底面的个数;

2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:选择题

如图,在2×2的正方形网格中有9个格点,已经取定点AB,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:解答题

如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.

(1)抛物线y=x2对应的碟宽为   ;抛物线y=4x2对应的碟宽为   ;抛物线y=ax2(a>0)对应的碟宽为  ;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为  

(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;

(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1

求抛物线y2的表达式;

若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn=  ,Fn的碟宽有端点横坐标为 2 ;F1,F2,…,Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:填空题

如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若BAD=60°,AB=2,则图中阴影部分的面积为   

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:选择题

如图,A、B、C、D四个点均在O上,AOD=70°,AODC,则B的度数为(  )

A.40° B.45° C.50° D.55°

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏镇江卷)数学(解析版) 题型:计算题

解不等式:并将它的解集在数轴上表示出来.

 

 

查看答案和解析>>

科目:初中数学 来源:2014年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:选择题

如图,点P在以AB为直径的半圆内,连AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法正确的是:

AC垂直平分BF;AC平分BAF;PFAB;BDAF.

A.①② B.①④ C.②④ D.③④

 

查看答案和解析>>

同步练习册答案