如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=
.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=
(k>0)的图象上,求反比例函数的解析式.
![]()
【解析】
试题分析:(1)根据∠DMA人正切值,可得PD的斜率,由PD与BC垂直,可得BD的斜率,从而可求出直线BC的解析式,根据函数值为0,可得C点坐标;
(2)由OA=4,可知D点横坐标,由于点D在直线BC上,从而可得D坐标,再由待定系数法,可得反比例函数解析式.
试题解析:(1)Rt△PBD的斜边PB落在y轴上,
∴BD⊥PB,
![]()
kPD=tan∠DMA=tan∠OMP=
=
=2,
kBD•kPD=﹣1,
kBD=﹣
,
直线BD的解析式是y=﹣
x+3,
当y=0时,﹣
x+3=0,
x=6,
C点坐标是(6,0);
(2)当x=4时,y=﹣
×4+3=1,
∴D(4,1).
点D在反比例函数y=
(k>0)的图象上,
∴k=4×1=4,
∴反比例函数的解析式为 y=
.
考点:1、直线斜率;2、反比例函数;3、一次函数
科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:解答题
用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
![]()
现有19张硬纸板,裁剪时
张用A方法,其余用B方法。
(1)用
的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(浙江宁波卷)数学(解析版) 题型:选择题
如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:解答题
如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.
(1)抛物线y=
x2对应的碟宽为 ;抛物线y=4x2对应的碟宽为 ;抛物线y=ax2(a>0)对应的碟宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为 ;
(2)抛物线y=ax2﹣4ax﹣
(a>0)对应的碟宽为6,且在x轴上,求a的值;
(3)将抛物线y=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3…),定义F1,F2,…,Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn﹣1的相似比为
,且Fn的碟顶是Fn﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.
①求抛物线y2的表达式;
②若F1的碟高为h1,F2的碟高为h2,…Fn的碟高为hn,则hn= ,Fn的碟宽有端点横坐标为 2 ;F1,F2,…,Fn的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:填空题
如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江西南昌卷)数学(解析版) 题型:选择题
如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
![]()
A.40° B.45° C.50° D.55°
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:选择题
如图,点P在以AB为直径的半圆内,连AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法正确的是:
![]()
①AC垂直平分BF;②AC平分∠BAF;③PF⊥AB;④BD⊥AF.
A.①② B.①④ C.②④ D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com