【题目】如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A.点B同时出发,沿三角形的边运动,已知点M的速度为2cm/s,点N的速度为3cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动 秒后,△AMN是等边三角形?
(2)点M、N在BC边上运动时,运动 秒后得到以MN为底边的等腰三角形△AMN?
(3)M、N同时运动几秒后,△AMN是直角三角形?请说明理由.
【答案】(1);(2);(3)点M、N运动3秒或秒或10秒或9秒后,△AMN为直角三角形.
【解析】
(1)当AM=AN时,△MNA是等边三角形.设运动时间为t秒,构建方程即可解决问题;
(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN.构建方程即可解决问题;
(3)据题意设点M、N运动t秒后,可得到直角三角形△AMN,分四种情况讨论即可.
(1)当AM=AN时,△MNA是等边三角形,设运动时间为t秒
则有:2t=12﹣3t
解得t=
故点M、N运动秒后,△AMN是等边三角形;
(2)点M、N在BC边上运动时,满足CM=BN时,可以得到以MN为底边的等腰三角形△AMN
则有:2t﹣12=36﹣3t
解得t=
故运动秒后得到以MN为底边的等腰三角形△AMN;
(3)设点M、N运动t秒后,可得到直角三角形△AMN
①当M在AC上,N在AB上,∠ANM=90°时,如图
∵∠A=60°
∴∠AMN=30°
∴AM=2AN
则有2t=2(12﹣3t)
∴t=3;
②当M在AC上,N在AB上,∠AMN=90°时,如图
∵∠A=60°
∴∠ANM=30°
∴2AM=AN
∴4t=12﹣3t
∴t=;
③当M、N都在BC上,∠ANM=90°时,如图
CN=3t﹣24=6
解得t=10;
④当M、N都在BC上,∠AMN=90°时,则N与B重合,M正好处于BC的中点,如图
此时2t=12+6
解得t=9;
综上所述,点M、N运动3秒或秒或10秒或9秒后,△AMN为直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1)M为BD的中点;(2) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=6,AB=10,则DE的长为______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是___.
【答案】-3.
【解析】
解:∵x=1是一元二次方程的根,∴12+k×1-3=0,∴k=2,∴x2+2x-3=0,∴(x+3)(x-1)=0,∴x1=-3,x2=1.故答案为:-3.
【题型】填空题
【结束】
19
【题目】如图,在△ABC中,AB=8,AC=6,AD=12,点D在BC的延长线上,且△ACD∽△BAD,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2x﹣3.
(1)该二次函数图象的对称轴为 ;
(2)判断该函数与x轴交点的个数,并说明理由;
(3)下列说法正确的是 (填写所有正确说法的序号)
①顶点坐标为(1,﹣4);
②当y>0时,﹣1<x<3;
③在同一平面直角坐标系内,该函数图象与函数y=﹣x2+2x+3的图象关于x轴对称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是等腰直角三角形,,点是的中点,延长至点,使,连接(如图①).
(1)求证:≌;
(2)已知点是的中点,连接(如图②).
①求证: ≌;
②如图③,延长至点,使,连接,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.
(1)求抛物线的表达式;
(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;
(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ与△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com