精英家教网 > 初中数学 > 题目详情

为了抓住世界杯商机,某商店决定购进A、B两种世界杯纪念品.若购进A种纪念品10件,B种纪念品5件,需要1 000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

(1)50,100;(2)共有6种进货方案;(3)当购进A种纪念品160件,B种纪念品20件时,可获最大利润,最大利润是3800元.

解析试题分析:(1)设我校购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据条件建立二元一次方程组求出其解即可;
(2)设我校购进A种纪念品x个,购进B种纪念品y个,根据条件的数量关系建立不等式组求出其解即可;
(3)设总利润为W元,根据总利润=两种商品的利润之和建立解析式,由解析式的性质就可以求出结论.
试题解析::(1)设我校购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,由题意,得

∴解方程组得:

答:购进一件A种纪念品需要50元,购进一件B种纪念品需要100元.
(2)设我校购进A种纪念品x个,购进B种纪念品y个,由题意,得

解得
解得:20≤y≤25
∵y为正整数
∴y=20,21,22,23,24,25 
答:共有6种进货方案;
(3)设总利润为W元,由题意,得
W=20x+30y=20(200-2 y)+30y,
=-10y+4000(20≤y≤25)
∵-10<0,
∴W随y的增大而减小,
∴当y=20时,W有最大值
W最大=-10×20+4000=3800(元)
答:当购进A种纪念品160件,B种纪念品20件时,可获最大利润,最大利润是3800元.
考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y=x+b的图象与反比例函数y=(x>0)的图象交于点A(2,1),与x轴交于点B.
(1)求k和b的值;
(2)连接OA,求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,一次函数y=-x+3的图象与x轴交于点A,与y轴交于点B,动点P从点B出发沿BA向终点A运动,同时动点Q从点O出发沿OB向点B运动,到达点B后立刻以原来的速度沿BO返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点A时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t>0)秒.
(1)求点P的坐标(用含t的代数式表示);
(2)当点Q从点O向点B运动时(未到达点B),是否存在实数t,使得△BPQ的面积大于17若存在,请求出t的取值范围;若不存在,请说明理由;
(3)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.是否存在t的值,使得直线l经过点O?若存在,请求出所有t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后分钟时,他所在的位置与家的距离为千米,且与之间的函数关系的图像如图中的折线段所示.
(1)试求折线段所对应的函数关系式;
(2)请解释图中线段的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离(千米)与小明出发后的时间(分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A、B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获利润分别为30元和35元,乙店铺获利润分别为26元和36元.某日,王老板进A款式服装36件,B款式服装24件,并将这批服装分配给两个店铺各30件.
(1)怎样将这60件服装分配给两个店铺,能使两个店铺在销售完这批服装后所获利润相同?
(2)怎样分配这60件服装能保证在甲店铺获利润不小于950元的前提下,王老板获利的总利润最大?最大的总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).
(1)求这两个函数的解析式;
(2)当x取何值时, <.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,与y轴交于点B,已知,点C(-2,m)在直线AB上,反比例函数的图象经过点C.
(1)求一次函数及反比例函数的解析式;
(2)结合图象直接写出:当时,不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).

(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

查看答案和解析>>

同步练习册答案