【题目】将两块大小相同的含30°角的直角三角板(=30°)按图1的方式放置,固定三角板ABC然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与AC交于点E,AC与AB交于点F,AB与AB交于点O.
(1)求证:;
(2)当旋转角等于30°时,AB与AB垂直吗?请说明理由。
【答案】(1)见解析;(2)AB与A1B1垂直,理由见解析
【解析】
(1)根据题意可知∠B=∠B1,BC=B1C,∠BCE=∠B1CF,利用ASA即可证出△BCE≌△B1CF;
(2)由旋转角等于30°得出∠ECF=30°,所以∠FCB1=60°,根据四边形的内角和可知∠BOB1的度数为360°-60°-60°-150°,最后计算出∠BOB1的度数即可.
(1)证明:由题意得,BC=B1C,∠B=∠B1=60°,
又∵∠BCE+∠ECF=90°,
∠B1CF+∠ECF=90°,
∴∠BCE=∠B1CF,
在△BCE和△B1CF中,
,
∴△BCE≌△B1CF(ASA);
(2)当旋转角等于30°时,AB与A1B1垂直.理由如下:
证明:∵∠ECF=30°,
∴∠BCE=60°,
∴△BCE是等边三角形,
∴∠BEC=60°,得∠A1EO=60°,
又∵∠A1=30°,
∴∠A1EO=60°,
即AB与A1B1垂直.
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0
(Ⅰ)当m=时,求方程的实数根;
(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,有下列结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△ADE的周长是9.其中,正确结论的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边三角形ABC内的一点,∠AOB=130°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OD.
(1)判断△COD的形状,并加以说明理由.
(2)若AD=1,OC=,OA=时,求α的度数.
(3)探究:当α为多少度时,△AOD是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读资料:阅读材料,完成任务:材料 阿尔·花拉子密(约 780~约 850),著名数学家、天文学家、地理学家,是代数与算术的整理者,被誉为“代数之父”。
他用以下方法求得一元二次方程 x2+2x-35=0 的解:
将边长为 x 的正方形和边长为 1 的正方形,外加两个长方形,长为 x,宽为 1,拼合在一起的面积是 x2+2×x×1+1×1,而由 x2+2x-35=0 变形得 x2+2x+1=35+1(如图所示),即右边边长为 x+1 的正方形面积为 36。
所以(x+1)2=36,则 x=5.
任务:请回答下列问题
(1)上述求解过程中所用的方法是( )
A.直接开平方法 B.公式法 C.配方法 D.因式分解法
(2)所用的数学思想方法是( ) 的的
A.分类讨论思想 B.数形结合思想 C.转化思想 D.公理化思想
(3)运用上述方法构造出符合方程 x2+8x-9=0 的一个正根的正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,△OBA和△DOC的边OA、OC都在x轴的正半轴上,点B的坐标为(6,8),∠BAO∠OCD90°,OD5,CD3.反比例函数的图象经过点D,交AB边于点E.
(1)求k的值;(2)求BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com