分析 (1)利用勾股定理即可求出AE′,BF′的长.
(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题;
(3)直线AE′与直线BF′相交于点P,当点P在坐标轴上时,α=180°,P与O重合,易求出点E′、D′、F′的坐标.
解答 解:(1)当α=90°时,点E′与点F重合,如图①.
∵点A(-2,0)点B(0,2),
∴OA=OB=2,
∵点E,点F分别为OA,OB的中点,![]()
∴OE=OF=1,
∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,
∴OE′=OE=1,OF′=OF=1.
在Rt△AE′O中,
AE′=$\sqrt{O{A}^{2}+O{E}^{2}}$=$\sqrt{5}$.
在Rt△BOF′中,
BF′=$\sqrt{O{B}^{2}+O{F}^{2}}$=$\sqrt{5}$.
∴AE′,BF′的长都等于$\sqrt{5}$;
(2)当α=135°时,如图②.
∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,
∴∠AOE′=∠BOF′=135°.![]()
在△AOE′和△BOF′中,
$\left\{\begin{array}{l}{AO=BO}\\{∠AOE′=∠BOF′}\\{OE′=OF′}\end{array}\right.$,
∴△AOE′≌△BOF′(SAS).
∴AE′=BF′,且∠OAE′=∠OBF′.
∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,
∴∠CPB=∠AOC=90°,
∴AE′⊥BF′;
(3)点E′(1,0)、D′(1,-1)、F′(0,-1)
如图③,直线AE′与直线BF′相交于点P,当点P在坐标轴上时,α=180°,P与O重合,
∵OE′=OF′=1,
∴点E′(1,0)、D′(1,-1)、F′(0,-1).
点评 本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质等知识,根据旋转的性质找到全等三角形是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com