【题目】如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.
【答案】OE⊥AB. ……1分
证明:在△BAC和△ABD中,
AC=BD,
∠BAC=∠ABD,
AB=BA.
∴△BAC≌△ABD. ……5分
∴∠OBA=∠OAB,
∴OA=OB. ……8分
又∵点E是AB的中点
∴AE=BE.∴OE⊥AB. ……l0分
(注:若开始未给出判断“OE⊥AB”,但证明过程正确,不扣分)
【解析】试题分析:首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB再利用等腰三角形“三线合一”的性质即可证得结论.
解:OE垂直且平分AB.
证明:在△BAC和△ABD中,
,
∴△BAC≌△ABD(SAS).
∴∠OBA=∠OAB,
∴OA=OB.
又∵AE=BE,∴OE⊥AB.
又点E是AB的中点,
∴OE垂直且平分AB.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AB=10 cm,BC=6 cm,动点P从点C出发,以每秒2 cm的速度按C→A的路径运动,设运动时间为t秒.
(1)出发2秒时,△ABP的面积为 cm2;
(2)当t为何值时,BP恰好平分∠ABC?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若S四边形BFDE=9,则AB的长为:
A. 3 B. 6 C. 9 D. 18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com