【题目】如图,抛物线y=- +mx+m+与x轴相交于点A、B(点A在B的左侧)与y轴相交于点C,顶点D在第一象限.
(1)求顶点D的坐标(用m 的代数式表示);
(2)当60°≤∠ADB≤90°时,求m的变化范围;
(3)当△BCD的面积与△ABC的面积相等时,求m的值.
【答案】(1)D;(2);(3)
【解析】分析:(1)运用配方法改写成顶点式,即可求出顶点D的坐标;
(2)先将y=﹣x2+mx+m+与x轴的交点A与B的坐标,得到DH,AH的长度,再由抛物线的对称性可知当60°≤∠ADB≤90°时,30°≤∠ADH≤45°,然后根据30°,45°角的正切函数值及锐角三角函数的增减性即可求出m的变化范围;
(3)设DH与BC交于点M,则点M的横坐标为m.先运用待定系数法求出直线BC的解析式,则可用含m的代数式表示点M的坐标,再根据S△DBC=S△ABC求出m的值.
详解:(1)y=﹣x2+mx+m+=﹣(x﹣m)2+,∴顶点D(m,),即;D(m,).
(2)过D作DH⊥x轴于H.令y=﹣x2+mx+m+=0,解得:x=﹣1或2m+1,
则与x轴的交点A(﹣1,0),B(2m+1,0),∴DH=,AH=m﹣(﹣1)=m+1,∴tan∠ADH==.
当60°≤∠ADB≤90°时,由对称性得30°≤∠ADH≤45°,∴当∠ADH=30°时,=,∴m=2﹣1,当∠ADH=45°时,=1,∴m=1,∴1≤m≤2﹣1;
(3)设DH与BC交于点M,则点M的横坐标为m.
设过点B(2m+1,0),C(0,m+)的直线解析式为;y=kx+b,则,解得,即y=﹣x+m+.
当x=m时,y=﹣m+m+=,∴M(m,),∴DM=﹣=,AB=(2m+1)﹣(﹣1)=2m+2.
又∵S△DBC=S△ABC,∴(2m+1)=(2m+2)(m+).解得:m=-1,m=-,m=2.又∵抛物线的顶点D在第一象限,∴m>0,解得
科目:初中数学 来源: 题型:
【题目】(1)以a,b为直角边,c为斜边作两个全等的Rt△ABE与Rt△FCD拼成如图1所示的图形,使B,E,F,C四点在一条直线上(此时E,F重合),可知△ABE ≌△FCD,AEDF,请你证明:;
(2)在(1)中,固定△FCD,再将△ABE沿着BC平移到如图2的位置(此时B,F重合),请你重新证明:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段a,直线AB和CD相交于点O.利用尺规按下列要求作图:
(1)在射线OA、OB、OC、OD上作线段OA′、OB′、OC′、OD′,使它们分别与线段a相等;
(2)连接A′C′、C′B′、B′D′、D′A′.你得到了一个怎样的图形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+6与反比例函数y=(x>0)的图象交于A(3-,a)和B两点.
(1)求k的值;
(2)直线x=m与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=1,求m的值;
(3)直接写出不等式>x的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等边三角形ABC的顶点B,C的坐标分别为(1,0),(3,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,平分.
(1)若,则_______°,_______°;
(2)若,则________°,________°;
(3)若,,请直接写出与之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的两边,的长分别为3,8,且点,均在轴的负半轴上,是的中点,反比例函数的图象经过点,与交于点.
(1)若点坐标为,求的值;
(2)若,且点的横坐标为,则点的横坐标为______(用含的代数式表示),点的纵坐标为______,反比例函数的表达式为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com