精英家教网 > 初中数学 > 题目详情
已知直线分别与y轴、x轴相交于A、B两点,与二次函数的图像交于A、C两点.

(1)当点C坐标为()时,求直线AB的解析式;
(2)在(1)中,如图,将△ABO沿y轴翻折180°,若点B的对应点D恰好落在二次函数的图像上,求点D到直线AB的距离;
(3)当-1≤x≤1时,二次函数有最小值-3,求实数m的值.
(1);(2)4.8;(3)7或-7.

试题分析:(1)把C点坐标分别代入二次函数解析式,求出m的值;把A(0,b)代入二次函数解析式,求出b的值,再把C点坐标代入直线解析式,求出k的值,从而可求直线解析式;
(2)由(1)知点B的坐标,从而可确定点D的坐标,然后用面积法可求点D到直线AB的距离;
(3)进行分类讨论,分别求出m的值.
试题解析:(1)∵点C()在抛物线上,

解得:m=

在直线中,令x=0,则y=b,
∴A(0,b)
把A点坐标代入得,b=3
即A(0,3)
把(),A(0,3)代入,得
,解得:
所以直线AB的解析式为:.
(2)令y=0,则x=4,故B(4,0)
∴D(-4,0).
连接CD,在△BCD中,BD=8,BC=

过D作DE⊥BC,垂足为E.则.
解得:DE=4.8
(3)∵抛物线的对称轴为
∴当时,x=-1时二次函数的最小值为-3,得:
解得:m=-7;
当-1<<1时,x=时二次函数的最小值为-3,得:,
解得:m=,舍去.
≥1时,x=1时二次函数的最小值为-3,得:12-m+3=-3,解得:m=7;
所以实数m的值为7或-7.
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线经过点A(4,0),B(2,2),连结OB,AB.

(1)求的值;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个小家电定价增加元,每售出一个小家电可获得的利润是多少元?(用含的代数式表示)
(2)当定价增加多少元时,商店获得利润6000元 ?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线(m是常数,)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.
(1)此抛物线的解析式;
(2)求点A、B、C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.

(1)求此二次函数的解析式;
(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;
(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:,则小球距离地面的最大高度是
A.1米B.5米C.6米D.7米

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数 (a≠0)中的自变量x与函数值y的部分对应值如下表:
x


-1

0

1


y


-2

-2

0


的解为    

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个正方形的周长和是10,如果其中一个正方形的边长为,则这两个正方形的面积的和S关于的函数关系式为
A.B.
C.D.

查看答案和解析>>

同步练习册答案