精英家教网 > 初中数学 > 题目详情
14.一等腰三角形的周长为20,其中一边长为5,则它的腰长等于7.5.

分析 当腰长=5时,底边=20-5-5=10,不能构成三角形,当底边=5时,腰长=$\frac{20-5}{2}$=7.5cm,根据三角形的三边关系,即可推出腰长.

解答 解:∵等腰三角形的周长为20,
∴当腰长=5时,底边=10,
∵5+5=10,不能构成三角形,
∴当底边=5时,腰长=7.5,
故答案为7.5.

点评 本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论5cm为腰长还是底边长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅.
(1)如图1,△ABC中,∠A=30°,BC=2,则△ABC的外接圆的半径为2;
(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P,点P满足;∠BPC=∠BEC,且PB=PC;(要求:用直尺与圆规作出点P,保留作图痕迹.)
(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m),过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为2≤m<1+$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知a=5,|b|=2,则a+b的值为3或7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在等腰Rt△ABC中,AC=BC=2$\sqrt{2}$,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.多项式$\frac{2}{3}$x3y-2xy2+xy4-12x3+7是五次五项式,它的最高次项是xy4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为(-4,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.一个多项式加上2x2-4x-3得-x2-3x,则这个多项式为-3x2+x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,已知点B.C.D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.
①△BCE≌△ACD;
②CF=CH;
③△CFH为等边三角形;
④FH∥BD;
⑤AD与BE的夹角为60°,
以上结论正确的是①②③④⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知函数y=2x2a+2b是正比例函数,则a+b=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案