精英家教网 > 初中数学 > 题目详情

【题目】如图,已知矩形OABC的一个顶点B的坐标是(42),反比例函数y=x0)的图象经过矩形的对称中点E,且与边BC交于点D,若过点D的直线y=mx+n将矩形OABC的面积分成35的两部分,则此直线的解析式为_____

【答案】y=2x+4或y=﹣x+

【解析】矩形OABC的顶点B的坐标是(42),E是矩形ABCD的对称中心,

E的坐标为(21),

代入反比例函数解析式得, =1

解得k=2

反比例函数解析式为y=

D在边BC上,

D的纵坐标为2

y=2时, =2

解得x=1

D的坐标为(12);如图,设直线与x轴的交点为F


矩形OABC的面积=4×2=8

矩形OABC的面积分成35的两部分,

梯形OFDC的面积为=3×8=5.

D的坐标为(12),

1+OF×2=3

解得OF=2

此时点F的坐标为(20),

解得

此时,直线解析式为y=-2x+4

1+OF×2=5

解得OF=4

此时点F的坐标为(40),与点A重合,

解得

此时,直线解析式为

综上所述,直线的解析式为y=-2x+4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD,点P是对角线AC上一点,连结BP,过P作PQBP,PQ交CD于Q,若AP=4,CQ=10,则正方形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB4,∠DAB60°,点EAD边的中点,点MAB边上的一个动点(不与点A重合),延长MECD的延长线于点N,连接MDAN

1)求证:四边形AMDN是平行四边形;

2)当AM的值为   时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C路程y(千米)与甲车出发时间t(小时)的关系图象如图所示,则下列说法:①A、B两地之间的距离为180千米;乙车的速度为36千米/小时;③a=3.75;④当乙车到达终点时,甲车距离终点还有30千米.其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.

1)甲、乙两队合作施工多少天能完成该管线的铺设?

2)由两队合作完成该管线铺设工程共需支付工程费多少元?

3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上点A表示数a,B表示数b,C表示数c,a是多项式2x24x+1的一次项系数,b是最小的正整数,单项式x2y4的次数为c.

(1)a=___b=___c=___

(2)若将数轴在点B处折叠,则点A与点C___重合(填“能”或“不能”)

(3)A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,B与点C之间的距离表示为BC,AB=___,BC=___(用含t的代数式表示)

(4)请问:3ABBC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明同学早上骑自行车上学,中途因道路施工需步行一段路,到学校共用时18分钟,他骑自行车的平均速度是300/分钟,步行的平均速度是120/分钟,他家离学校的距离是4500.

1)李明上学时骑自行车的路程和步行的路程分别为多少米?

2)放学后李明从17:40开始离校回家,但此时道路施工的地段增长了600米,如果按照上学时的速度,问李明能否在18:00之前到家?请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的面积为32,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为(  )

A. 8 B. 6 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,抛物线y=ax2+bx+3x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.

(1)求抛物线的表达式;

(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;

(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.

查看答案和解析>>

同步练习册答案