精英家教网 > 初中数学 > 题目详情
已知,如图,A、B、C三个村庄在一条东西走向的公路沿线上,AB=12千米,在B村的正北方向有一个D村,测得∠DAB=45°,∠DCB=28°,今将△ACD区域进行规划,除其中面积为0.5平方千米的水塘外,准备把剩余的一半作为绿化用地.
(1)求BC的长.
(2)求绿化地的面积.
(结果精确到0.1,sin28°=0.4695,sin62°=0.8829,tan28°=0.5317,tan62°=1.8808)
分析:(1)在Rt△ABD中,由∠DAB=45°,可得出∠BDA=45°,故DB=AB=12,在Rt△BCD中利用锐角三角函数的定义即可求出BC的长;
(2)根据S绿化地=S△ACD-S池塘
1
2
[
1
2
(AC+BD)×12-0.5]即可得出结论.
解答:解:(1)在Rt△ABD中,
∵∠DAB=45°,
∴∠BDA=45°,
∴DB=AB=12,
在Rt△BCD中,
∵tan∠BDC=
BC
BD

∴BC=BDtan∠BDC=12×tan62°=22.6(千米);

(2)S绿化地=
1
2
[
1
2
(AC+BD)×12-0.5]
=
1
2
[
1
2
×(22.57+12)×12-0.5]
=103.5(平方千米)
点评:本题考查的是解直角三角形的应用,涉及到锐角三角函数的定义、等腰直角三角形的判定与性质及三角形的面积公式,涉及面较广,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向M、N两地之间修建一条道路.已知:如图C点周围180m范围内为文物保护区,在MN上点A处测得C在A的北偏东60°方向上,从A向东走500m到达B处精英家教网,测得C在B的北偏西45°方向上.
(1)NM是否穿过文物保护区?为什么?(参考数据:
3
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工作需要多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为
π

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠1=∠2,
 
.求证:AB=AC.
(1)在横线上添加一个使命题的结论成立的条件;
(2)写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为
AD边上一动点(与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1,
(Ⅰ)求BC、AP1的长;
(Ⅱ)设AP=m,梯形PECD的面积为S,求S与m之间的函数关系式,写出自变量m的取值范围;
(Ⅲ)以点E为圆心作⊙E与x轴相切,探究并猜想:⊙P和⊙E有哪几种位置关系,并求出AP相应的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=-
3
3
x2-
2
3
3
x+
3
的图象与x轴分别交于A,B两点,与y轴交精英家教网于C点,⊙M经过原点O及点A、C,点D是劣弧
OA
上一动点(D点与A、O不重合).
(1)求抛物线的顶点E的坐标;
(2)求⊙M的面积;
(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.

查看答案和解析>>

同步练习册答案