解:(1)设抛物线的解析式是y=a(x-1)
2-
,
把C(0,-
)代入得:a=
,
∴y=
,
答:抛物线的表达式是y=
(x-1)
2-
.
(2)①解:y=
(x-1)
2-
=0,
解得:x
1=-1,x
2=3,
A(-1,0),B(3,0),
∴E(1,0),
∴D(2,
),
故答案为:D(2,
).
②四边形ADBC是矩形.
理由:四边形ADBC是平行四边形,且∠ACB=90°,
(3)答:存在.
解:作出点B关于直线AC的对称点Bˊ,连接BˊD与直线AC交于点F.
则点F是使△FBD周长最小的点.
∵∠BˊCA=∠DAF=90°,∠BˊFC=∠DFA,
∴△BˊFC∽△DFA.
∴F是线段AC的中点,求得F(
,
),
答:存在,F的坐标是(-
,-
).
分析:(1)设抛物线的解析式是y=a(x-1)
2-
,把C(0,-
)代入求出a=
即可;
(2)y=
(x-1)
2-
=0,求出A、B的坐标,得到E(1,0),即可推出D的坐标,根据矩形的判定即可推出答案;
(3)作出点B关于直线AC的对称点Bˊ,连接BˊD与直线AC交于点F.则点F是使△FBD周长最小的点.根据△BˊFC∽△DFA即可求出答案.
点评:本题主要考查对用待定系数法求二次函数的解析式,解一元二次方程,平行四边形的性质,相似三角形的性质和判定,中心对称图形等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.