【题目】如图,已知数轴上点 A 表示的数为 6,B 是数轴上在 A 左侧的一点,且 A, B 两点间的距离为 10.动点 P 从点 A 出发,以每秒 6 个单位长度的速度沿数轴 向左匀速运动,设运动时间为 t(t>0)秒.
(1)数轴上点 B 表示的数是 ,点 P 表示的数是 (用含 t 的代数 式表示);
(2)动点 Q 从点 B 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,若 点 P、Q 时出发.求:
①当点 P 运动多少秒时,点 P 与点 Q 相遇?
②当点 P 运动多少秒时,点 P 与点 Q 间的距离为 8 个单位长度?
【答案】(1)﹣4;6﹣6t;(2)①t=5,②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】试题分析:(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;
(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;
②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.
解:(1)∵数轴上点A表示的数为6,
∴OA=6,
则OB=AB﹣OA=4,
点B在原点左边,
∴数轴上点B所表示的数为﹣4;
点P运动t秒的长度为6t,
∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,
∴P所表示的数为:6﹣6t;
(2)①点P运动t秒时追上点R,
根据题意得6t=10+4t,
解得t=5,
答:当点P运动5秒时,点P与点Q相遇;
②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,
当P不超过Q,则10+4a﹣6a=8,解得a=1;
当P超过Q,则10+4a+8=6a,解得a=9;
答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
科目:初中数学 来源: 题型:
【题目】已知点P(2a﹣12,1﹣a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.
(1)若点P的纵坐标为﹣3,试求出a的值;
(2)在(1)题的条件下,试求出符合条件的一个点Q的坐标;
(3)若点P的横、纵坐标都是整数,试求出a的值以及线段PQ长度的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;(2)求BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.
(1)在图中画出△A1B1C1;
(2)点A1,B1,C1的坐标分别为 、 、 ;
(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程:
我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.
① ② ③ ④
我选择第 个方程。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.
证明:∵ ,
∴∠CDA=90°,∠DAB=90° ( ).
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴ ( ),
∴DF∥AE ( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,∠BAC=60°,△ABC绕点C顺时针旋转,旋转角为α(0°<α<180°),点A、B的对应点分别是点D、E.
(1)如图1,当点D恰好落在边AB上时,试判断DE与AC的位置关系,并说明理由.
(2)如图2,当点B、D、E三点恰好在一直线上时,旋转角α=__°,此时直线CE与AB的位置关系是__.
(3)在(2)的条件下,联结AE,设△BDC的面积S1,△AEC的面积S2,则S1与S2的数量关系是_____.
(4)如图3,当点B、D、E三点不在一直线上时,(3)中的S1与S2的数量关系仍然成立吗?试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com