精英家教网 > 初中数学 > 题目详情
如图⊙O中,AB是直径,AC和AD是弦,且AD平分∠BAC,过D作AC的垂线交AC的延长线于E,
(1)求证:DE是⊙O的切线.
(2)若AE=4,AB=5,求AD的长.
分析:(1)连接OD,只需证明OD⊥DE即可;
(2)利用圆周角定理:直径所对圆周角为直角和已知条件判定△AED∽△ADB,进而求出AD的长.
解答:(1)证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
又∵AD平分∠BAC,
∴∠CAD=∠DAO,
∴∠ODA=∠CAD,
∴OD∥AE,
∵AE⊥DE,
∴∠AED=90°,
∴∠AOD=90°,
∴DE是⊙O的切线;
(2)解:连接BD,
∵AB为⊙O的直径,
∴∠ADB=∠AED=90°,
∵∠CAD=∠DAO,
∴△AED∽△ADB,
AE
AD
=
AD
AB

4
AD
=
AD
5

∴AD=2
5
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可,还考查了相似三角形的判定和性质以及圆周角定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图,在△ABC中,AB=AC,D是BC的中点,连接AD.DE⊥AB,DF⊥AC,E,F是垂足.图中共有多少对全等三角形?请直接用“≌”符号把它们分别表示出来.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道过两点有且只有一条直线.
阅读下面文字,分析其内在涵义,然后回答问题:
如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:
过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有
3×42
=6条直线.请你仿照上面分析方法,回答下面问题:
精英家教网
(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出
 
条直线;
若平面上有符合上述条件的六个点,一共可以画出
 
条直线;
若平面上有符合上述条件的n个点,一共可以画出
 
条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=
13
∠MAN.
(Ⅰ)当∠MAN=69°时,∠α的大小为
23
23
(度);
(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

同步练习册答案